TEST - Catálogo BURRF
   

Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds / by Rainer Weissauer.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 1968Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540893066
Formatos físicos adicionales: Edición impresa:: Sin títuloRecursos en línea:
Contenidos:
An Application of the Hard Lefschetz Theorem -- CAP-Localization -- The Ramanujan Conjecture for Genus two Siegel modular Forms -- Character identities and Galois representations related to the group GSp(4) -- Local and Global Endoscopy for GSp(4) -- A special Case of the Fundamental Lemma I -- A special Case of the Fundamental Lemma II -- The Langlands-Shelstad transfer factor -- Fundamental lemma (twisted case) -- Reduction to unit elements -- Appendix on Galois cohomology -- Appendix on Double Cosets.
Resumen: The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some basic results on their cohomology groups are derived in this book from considering topological trace formulas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

An Application of the Hard Lefschetz Theorem -- CAP-Localization -- The Ramanujan Conjecture for Genus two Siegel modular Forms -- Character identities and Galois representations related to the group GSp(4) -- Local and Global Endoscopy for GSp(4) -- A special Case of the Fundamental Lemma I -- A special Case of the Fundamental Lemma II -- The Langlands-Shelstad transfer factor -- Fundamental lemma (twisted case) -- Reduction to unit elements -- Appendix on Galois cohomology -- Appendix on Double Cosets.

The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some basic results on their cohomology groups are derived in this book from considering topological trace formulas.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha