TEST - Catálogo BURRF
   

Noncommutative Spacetimes : Symmetries in Noncommutative Geometry and Field Theory / by Paolo Aschieri, Marija Dimitrijevic, Petr Kulish, Fedele Lizzi, Julius Wess.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Physics ; 774Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540897934
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC5.53
Recursos en línea:
Contenidos:
Deformed Field Theory: Physical Aspects -- Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg–Witten Approach -- Another Example of Noncommutative Spaces: ?-Deformed Space -- Noncommutative Geometries: Foundations and Applications -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras, and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformations of Quantum Integrable Spin Chains -- The Noncommutative Geometry of Julius Wess.
Resumen: There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Deformed Field Theory: Physical Aspects -- Differential Calculus and Gauge Transformations on a Deformed Space -- Deformed Gauge Theories -- Einstein Gravity on Deformed Spaces -- Deformed Gauge Theory: Twist Versus Seiberg–Witten Approach -- Another Example of Noncommutative Spaces: ?-Deformed Space -- Noncommutative Geometries: Foundations and Applications -- Noncommutative Spaces -- Quantum Groups, Quantum Lie Algebras, and Twists -- Noncommutative Symmetries and Gravity -- Twist Deformations of Quantum Integrable Spin Chains -- The Noncommutative Geometry of Julius Wess.

There are many approaches to noncommutative geometry and to its use in physics. This volume addresses the subject by combining the deformation quantization approach, based on the notion of star-product, and the deformed quantum symmetries methods, based on the theory of quantum groups. The aim of this work is to give an introduction to this topic and to prepare the reader to enter the research field quickly. The order of the chapters is "physics first": the mathematics follows from the physical motivations (e.g. gauge field theories) in order to strengthen the physical intuition. The new mathematical tools, in turn, are used to explore further physical insights. A last chapter has been added to briefly trace Julius Wess' (1934-2007) seminal work in the field.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha