TEST - Catálogo BURRF
   

The General Theory of Homogenization : A Personalized Introduction / by Luc Tartar.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes of the Unione Matematica Italiana ; 7Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: xxii, 471 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642051951
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA370-380
Recursos en línea:
Contenidos:
Why Do I Write? -- A Personalized Overview of Homogenization I -- A Personalized Overview of Homogenization II -- An Academic Question of Jacques-Louis Lions -- A Useful Generalization by François Murat -- Homogenization of an Elliptic Equation -- The Div–Curl Lemma -- Physical Implications of Homogenization -- A Framework with Differential Forms -- Properties of H-Convergence -- Homogenization of Monotone Operators -- Homogenization of Laminated Materials -- Correctors in Linear Homogenization -- Correctors in Nonlinear Homogenization -- Holes with Dirichlet Conditions -- Holes with Neumann Conditions -- Compensated Compactness -- A Lemma for Studying Boundary Layers -- A Model in Hydrodynamics -- Problems in Dimension = 2 -- Bounds on Effective Coefficients -- Functions Attached to Geometries -- Memory Effects -- Other Nonlocal Effects -- The Hashin–Shtrikman Construction -- Confocal Ellipsoids and Spheres -- Laminations Again, and Again -- Wave Front Sets, H-Measures -- Small-Amplitude Homogenization -- H-Measures and Bounds on Effective Coefficients -- H-Measures and Propagation Effects -- Variants of H-Measures -- Relations Between Young Measures and H-Measures -- Conclusion -- Biographical Information -- Abbreviations and Mathematical Notation.
Resumen: Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of François Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science, new mathematical tools must be introduced, like the author’s H-measures, variants by Patrick Gérard, and others yet to be discovered.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Why Do I Write? -- A Personalized Overview of Homogenization I -- A Personalized Overview of Homogenization II -- An Academic Question of Jacques-Louis Lions -- A Useful Generalization by François Murat -- Homogenization of an Elliptic Equation -- The Div–Curl Lemma -- Physical Implications of Homogenization -- A Framework with Differential Forms -- Properties of H-Convergence -- Homogenization of Monotone Operators -- Homogenization of Laminated Materials -- Correctors in Linear Homogenization -- Correctors in Nonlinear Homogenization -- Holes with Dirichlet Conditions -- Holes with Neumann Conditions -- Compensated Compactness -- A Lemma for Studying Boundary Layers -- A Model in Hydrodynamics -- Problems in Dimension = 2 -- Bounds on Effective Coefficients -- Functions Attached to Geometries -- Memory Effects -- Other Nonlocal Effects -- The Hashin–Shtrikman Construction -- Confocal Ellipsoids and Spheres -- Laminations Again, and Again -- Wave Front Sets, H-Measures -- Small-Amplitude Homogenization -- H-Measures and Bounds on Effective Coefficients -- H-Measures and Propagation Effects -- Variants of H-Measures -- Relations Between Young Measures and H-Measures -- Conclusion -- Biographical Information -- Abbreviations and Mathematical Notation.

Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of François Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science, new mathematical tools must be introduced, like the author’s H-measures, variants by Patrick Gérard, and others yet to be discovered.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha