TEST - Catálogo BURRF
   

Classification and Multivariate Analysis for Complex Data Structures / edited by Bernard Fichet, Domenico Piccolo, Rosanna Verde, Maurizio Vichi.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Studies in Classification, Data Analysis, and Knowledge OrganizationEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: xIx, 473 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642133121
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Key Notes -- Classification and Discrimination -- Data Mining -- Robustness and Classification -- Categorical Data and Latent Class Approach -- Latent Variables and Related Methods -- Symbolic, Multivalued and Conceptual Data Analysis -- Spatial, Temporal, Streaming and Functional Data Analysis -- Bio and Health Science.
Resumen: The growing capabilities in generating and collecting data has risen an urgent need of new techniques and tools in order to analyze, classify and summarize statistical information, as well as to discover and characterize trends, and to automatically bag anomalies. This volume provides the latest advances in data analysis methods for multidimensional data which can present a complex structure: The book offers a selection of papers presented at the first Joint Meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society. Special attention is paid to new methodological contributions from both the theoretical and the applicative point of views, in the fields of Clustering, Classification, Time Series Analysis, Multidimensional Data Analysis, Knowledge Discovery from Large Datasets, Spatial Statistics.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Key Notes -- Classification and Discrimination -- Data Mining -- Robustness and Classification -- Categorical Data and Latent Class Approach -- Latent Variables and Related Methods -- Symbolic, Multivalued and Conceptual Data Analysis -- Spatial, Temporal, Streaming and Functional Data Analysis -- Bio and Health Science.

The growing capabilities in generating and collecting data has risen an urgent need of new techniques and tools in order to analyze, classify and summarize statistical information, as well as to discover and characterize trends, and to automatically bag anomalies. This volume provides the latest advances in data analysis methods for multidimensional data which can present a complex structure: The book offers a selection of papers presented at the first Joint Meeting of the Société Francophone de Classification and the Classification and Data Analysis Group of the Italian Statistical Society. Special attention is paid to new methodological contributions from both the theoretical and the applicative point of views, in the fields of Clustering, Classification, Time Series Analysis, Multidimensional Data Analysis, Knowledge Discovery from Large Datasets, Spatial Statistics.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha