TEST - Catálogo BURRF
   

Fourier Analysis and Nonlinear Partial Differential Equations / by Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 343Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: xvI, 524 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642168307
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA299.6-433
Recursos en línea:
Contenidos:
Preface -- 1. Basic analysis -- 2. Littlewood-Paley theory -- 3. Transport and transport-diffusion equations -- 4. Quasilinear symmetric systems -- 5. Incompressible Navier-Stokes system -- 6. Anisotropic viscosity -- 7. Euler system for perfect incompressible fluids -- 8. Strichartz estimates and applications to semilinear dispersive equations -- 9. Smoothing effect in quasilinear wave equations -- 10 -- The compressible Navier-Stokes system -- References. - List of notations -- Index.
Resumen: In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations.  It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- 1. Basic analysis -- 2. Littlewood-Paley theory -- 3. Transport and transport-diffusion equations -- 4. Quasilinear symmetric systems -- 5. Incompressible Navier-Stokes system -- 6. Anisotropic viscosity -- 7. Euler system for perfect incompressible fluids -- 8. Strichartz estimates and applications to semilinear dispersive equations -- 9. Smoothing effect in quasilinear wave equations -- 10 -- The compressible Navier-Stokes system -- References. - List of notations -- Index.

In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations.  It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha