TEST - Catálogo BURRF
   

Studying Atomic Dynamics with Coherent X-rays / by Michael Leitner.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer ThesesEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Descripción: x, 96 páginas 37 ilustraciones, 9 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642241215
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC176-176.9
Recursos en línea:
Contenidos:
Introduction -- Theory -- Linking Theory to Experiments -- Characteristics of Diffusion in Selected Systems -- Data Evaluation -- Considerations Concerning the Experiment -- Experimental Results -- Outlook -- Appendix.
Resumen: Diffusion in solids at moderate temperatures is a well-known phenomenon.  However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem. Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy. The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Theory -- Linking Theory to Experiments -- Characteristics of Diffusion in Selected Systems -- Data Evaluation -- Considerations Concerning the Experiment -- Experimental Results -- Outlook -- Appendix.

Diffusion in solids at moderate temperatures is a well-known phenomenon.  However, direct experimental evidence about the responsible atomic-scale mechanisms has been scarce, due to difficulties in probing the relevant length- and time-scales. The present thesis deals with the application of X-ray Photon Correlation Spectroscopy (XPCS) for answering such questions. This is an established method for the study of slow dynamics on length-scales of a few nanometres. The scattered intensity in the diffuse regime, i.e. corresponding to atomic distances, is very low, however, and so it has so far been considered impossible to use XPCS for this problem. Threefold progress is reported in this work: It proposes a number of systems selected for high diffuse intensity, it optimizes the photon detection and data evaluation procedures, and it establishes theoretical models for interpretating the results. Together these advances allowed the first successful atomic-scale XPCS experiment, which elucidated the role of preferred configurations for atomic jumps in a copper-gold alloy. The growth in available coherent X-ray intensity together with next-generation X-ray sources will open up a wide field of application for this new method.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha