TEST - Catálogo BURRF
   

The Schrödinger-Virasoro Algebra : Mathematical structure and dynamical Schrödinger symmetries / by Jérémie Unterberger, Claude Roger.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Theoretical and Mathematical PhysicsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Descripción: xLii, 302 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642227172
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC5.53
Recursos en línea:
Contenidos:
Introduction -- Geometric Definitions of SV -- Basic Algebraic and Geometric Features -- Coadjoint Representaion -- Induced Representations and Verma Modules -- Coinduced Representations -- Vertex Representations -- Cohomology, Extensions and Deformations -- Action of sv on Schrödinger and Dirac Operators -- Monodromy of Schrödinger Operators -- Poisson Structures and Schrödinger Operators -- Supersymmetric Extensions of sv -- Appendix to chapter 6 -- Appendix to chapter 11 -- Index.
Resumen: This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence.   The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators. .
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Geometric Definitions of SV -- Basic Algebraic and Geometric Features -- Coadjoint Representaion -- Induced Representations and Verma Modules -- Coinduced Representations -- Vertex Representations -- Cohomology, Extensions and Deformations -- Action of sv on Schrödinger and Dirac Operators -- Monodromy of Schrödinger Operators -- Poisson Structures and Schrödinger Operators -- Supersymmetric Extensions of sv -- Appendix to chapter 6 -- Appendix to chapter 11 -- Index.

This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence.   The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators. .

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha