TEST - Catálogo BURRF
   

Harmonic Functions and Potentials on Finite or Infinite Networks / by Victor Anandam.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes of the Unione Matematica Italiana ; 12Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: x, 141 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642213991
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA404.7-405
Recursos en línea:
Contenidos:
1 Laplace Operators on Networks and Trees -- 2 Potential Theory on Finite Networks -- 3 Harmonic Function Theory on Infinite Networks -- 4 Schrödinger Operators and Subordinate Structures on Infinite Networks -- 5 Polyharmonic Functions on Trees.
Resumen: Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

1 Laplace Operators on Networks and Trees -- 2 Potential Theory on Finite Networks -- 3 Harmonic Function Theory on Infinite Networks -- 4 Schrödinger Operators and Subordinate Structures on Infinite Networks -- 5 Polyharmonic Functions on Trees.

Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha