TEST - Catálogo BURRF
   

Introduction to Modern Time Series Analysis / by Gebhard Kirchgässner, Jürgen Wolters, Uwe Hassler.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Texts in Business and EconomicsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Edición: 2nd ed. 2013Descripción: xii, 319 páginas 42 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642334368
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • HB139-141
Recursos en línea:
Contenidos:
Introduction and Basics -- Univariate Stationary Processes -- Granger Causality -- Vector Autoregressive Processes -- Nonstationary Processes -- Cointegration -- Nonstationary Panel Data -- Autoregressive Conditional Heteroscedasticity.
Resumen: This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series, bridging the gap between methods and realistic applications. It presents the most important approaches to the analysis of time series, which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series, Granger causality tests and vector autogressive models are presented. As the modelling of nonstationary uni- or multivariate time series is most important for real applied work, unit root and cointegration analysis as well as vector error correction models are a central topic. Tools for analysing nonstationary data are then transferred to the panel framework. Modelling the (multivariate) volatility of financial time series with autogressive conditional heteroskedastic models is also treated.  
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction and Basics -- Univariate Stationary Processes -- Granger Causality -- Vector Autoregressive Processes -- Nonstationary Processes -- Cointegration -- Nonstationary Panel Data -- Autoregressive Conditional Heteroscedasticity.

This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series, bridging the gap between methods and realistic applications. It presents the most important approaches to the analysis of time series, which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series, Granger causality tests and vector autogressive models are presented. As the modelling of nonstationary uni- or multivariate time series is most important for real applied work, unit root and cointegration analysis as well as vector error correction models are a central topic. Tools for analysing nonstationary data are then transferred to the panel framework. Modelling the (multivariate) volatility of financial time series with autogressive conditional heteroskedastic models is also treated.  

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha