TEST - Catálogo BURRF
   

Adaptive Sampling Designs : Inference for Sparse and Clustered Populations / by George A.F. Seber, Mohammad M. Salehi.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in StatisticsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: Ix, 70 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642336577
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Basic Ideas -- Adaptive Cluster Sampling -- Rao-Blackwell Modi -- Primary and Secondary Units -- Inverse Sampling Methods -- Adaptive Allocation.
Resumen: This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Basic Ideas -- Adaptive Cluster Sampling -- Rao-Blackwell Modi -- Primary and Secondary Units -- Inverse Sampling Methods -- Adaptive Allocation.

This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha