TEST - Catálogo BURRF
   

Advanced Statistical Methods for Astrophysical Probes of Cosmology / by Marisa Cristina March.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: xx, 177 páginas 46 ilustraciones, 11 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642350603
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QB980-991
Recursos en línea:
Contenidos:
Introduction -- Cosmology background -- Dark energy and apparent late time acceleration -- Supernovae Ia -- Statistical techniques -- Bayesian Doubt: Should we doubt the Cosmological Constant? -- Bayesian parameter inference for SNeIa data -- Robustness to Systematic Error for Future Dark Energy Probes -- Summary and Conclusions -- Index.
Resumen: This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is.   Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Cosmology background -- Dark energy and apparent late time acceleration -- Supernovae Ia -- Statistical techniques -- Bayesian Doubt: Should we doubt the Cosmological Constant? -- Bayesian parameter inference for SNeIa data -- Robustness to Systematic Error for Future Dark Energy Probes -- Summary and Conclusions -- Index.

This thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is.   Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha