TEST - Catálogo BURRF
   

Telegraph Processes and Option Pricing / by Alexander D. Kolesnik, Nikita Ratanov.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in StatisticsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: xii, 128 páginas 5 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642405266
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Preface -- 1.Preliminaries -- 2.Telegraph Process on the Line -- 3.Functionals of Telegraph Process -- 4.Asymmetric Jump-Telegraph Processes -- 5.Financial Modelling and Option Pricing -- Index.  .
Resumen: The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart of the classical Einstein-Smoluchowski's model of the Brownian motion in which the infinite speed of motion and the infinite intensity of the alternating directions are assumed. The book will be interesting to specialists in the area of diffusion processes with finite speed of propagation and in financial modelling. It will also be useful for students and postgraduates who are taking their first steps in these intriguing and attractive fields.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- 1.Preliminaries -- 2.Telegraph Process on the Line -- 3.Functionals of Telegraph Process -- 4.Asymmetric Jump-Telegraph Processes -- 5.Financial Modelling and Option Pricing -- Index.  .

The telegraph process is a useful mathematical model for describing the stochastic motion of a particle that moves with finite speed on the real line and alternates between two possible directions of motion at random time instants. That is why it can be considered as the finite-velocity counterpart of the classical Einstein-Smoluchowski's model of the Brownian motion in which the infinite speed of motion and the infinite intensity of the alternating directions are assumed. The book will be interesting to specialists in the area of diffusion processes with finite speed of propagation and in financial modelling. It will also be useful for students and postgraduates who are taking their first steps in these intriguing and attractive fields.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha