TEST - Catálogo BURRF
   

Intelligent Fashion Forecasting Systems: Models and Applications / edited by Tsan-Ming Choi, Chi-Leung Hui, Yong Yu.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014Descripción: viii, 194 páginas 76 ilustraciones, 39 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642398698
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • HF54.5-54.56
Recursos en línea:
Contenidos:
Part I: Introduction, review and exploratory studies -- 1.1 Introduction: Intelligent Fashion Forecasting -- 1.2  Sales forecasting in Apparel and Fashion Industry: a review -- Collaborative Planning Forecasting Replenishment Schemes in Apparel Supply Chain Systems: Cases and Research Opportunities -- Part II: Theoretical modeling research -- 2.1  Measuring Forecasting Accuracy: Problems and Recommendations (by the example of SKU-level judgmental adjustments) -- 2.2 Forecasting Demand for Fashion Goods: A Hierarchical Bayesian Approach -- Forecasting Fashion Store Reservations: Booking Horizon Forecasting with Dynamic Updating -- Part III: Intelligent fashion forecasting: applications and analysis -- 3.1 Fuzzy Forecast Combining for Apparel Demand Forecasting -- 3.2 Intelligent Fashion Colour Trend Forecasting Schemes: A Comparative Study -- 3.3 Neural Networks Based for Romanian Clothing Sector.      .
Resumen: Forecasting is a crucial function for companies in the fashion industry, but for many real-life forecasting applications, the data patterns are notorious for being highly volatile and it is very difficult, if not impossible, to analytically learn about the underlying patterns. As a result, many traditional methods (such as pure statistical models) will fail to make a sound prediction. Over the past decade, advances in artificial intelligence and computing technologies have provided an alternative way of generating precise and accurate forecasting results for fashion businesses. Despite being an important and timely topic, there is currently an absence of a comprehensive reference source that provides up-to-date theoretical and applied research findings on the subject of intelligent fashion forecasting systems. This three-part handbook fulfills this need and covers materials ranging from introductory studies and technical reviews, theoretical modeling research, to intelligent fashion forecasting applications and analysis. This book is suitable for academic researchers, graduate students, senior undergraduate students and practitioners who are interested in the latest research on fashion forecasting.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Part I: Introduction, review and exploratory studies -- 1.1 Introduction: Intelligent Fashion Forecasting -- 1.2  Sales forecasting in Apparel and Fashion Industry: a review -- Collaborative Planning Forecasting Replenishment Schemes in Apparel Supply Chain Systems: Cases and Research Opportunities -- Part II: Theoretical modeling research -- 2.1  Measuring Forecasting Accuracy: Problems and Recommendations (by the example of SKU-level judgmental adjustments) -- 2.2 Forecasting Demand for Fashion Goods: A Hierarchical Bayesian Approach -- Forecasting Fashion Store Reservations: Booking Horizon Forecasting with Dynamic Updating -- Part III: Intelligent fashion forecasting: applications and analysis -- 3.1 Fuzzy Forecast Combining for Apparel Demand Forecasting -- 3.2 Intelligent Fashion Colour Trend Forecasting Schemes: A Comparative Study -- 3.3 Neural Networks Based for Romanian Clothing Sector.      .

Forecasting is a crucial function for companies in the fashion industry, but for many real-life forecasting applications, the data patterns are notorious for being highly volatile and it is very difficult, if not impossible, to analytically learn about the underlying patterns. As a result, many traditional methods (such as pure statistical models) will fail to make a sound prediction. Over the past decade, advances in artificial intelligence and computing technologies have provided an alternative way of generating precise and accurate forecasting results for fashion businesses. Despite being an important and timely topic, there is currently an absence of a comprehensive reference source that provides up-to-date theoretical and applied research findings on the subject of intelligent fashion forecasting systems. This three-part handbook fulfills this need and covers materials ranging from introductory studies and technical reviews, theoretical modeling research, to intelligent fashion forecasting applications and analysis. This book is suitable for academic researchers, graduate students, senior undergraduate students and practitioners who are interested in the latest research on fashion forecasting.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha