TEST - Catálogo BURRF
   

Holomorphic Morse Inequalities and Bergman Kernels / by Xiaonan Ma, George Marinescu.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 254Editor: Basel : Birkhäuser Basel, 2007Descripción: xiii, 422 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783764381158
Otro título:
  • Winner of the Ferran Sunyer i Balaguer Prize 2006
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA331.7
Recursos en línea:
Contenidos:
Demailly’s Holomorphic Morse Inequalities -- Characterization of Moishezon Manifolds -- Holomorphic Morse Inequalities on Non-compact Manifolds -- Asymptotic Expansion of the Bergman Kernel -- Kodaira Map -- Bergman Kernel on Non-compact Manifolds -- Toeplitz Operators -- Bergman Kernels on Symplectic Manifolds.
Resumen: This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications. The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Demailly’s Holomorphic Morse Inequalities -- Characterization of Moishezon Manifolds -- Holomorphic Morse Inequalities on Non-compact Manifolds -- Asymptotic Expansion of the Bergman Kernel -- Kodaira Map -- Bergman Kernel on Non-compact Manifolds -- Toeplitz Operators -- Bergman Kernels on Symplectic Manifolds.

This book gives for the first time a self-contained and unified approach to holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel, and presents also various applications. The main analytic tool is the analytic localization technique in local index theory developed by Bismut-Lebeau. The book includes the most recent results in the field and therefore opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are included, e.g., an analytic proof of the Kodaira embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, a compactification of complete Kähler manifolds of pinched negative curvature, the Berezin-Toeplitz quantization, weak Lefschetz theorems, and the asymptotics of the Ray-Singer analytic torsion.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha