TEST - Catálogo BURRF
   

Extremum Problems for Eigenvalues of Elliptic Operators / by Antoine Henrot.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Frontiers in MathematicsEditor: Basel : Birkhäuser Basel, 2006Descripción: x, 202 páginas 16 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783764377069
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA329-329.9
Recursos en línea:
Contenidos:
Eigenvalues of elliptic operators -- Tools -- The first eigenvalue of the Laplacian-Dirichlet -- The second eigenvalue of the Laplacian-Dirichlet -- The other Dirichlet eigenvalues -- Functions of Dirichlet eigenvalues -- Other boundary conditions for the Laplacian -- Eigenvalues of Schrödinger operators -- Non-homogeneous strings and membranes -- Optimal conductivity -- The bi-Laplacian operator.
Resumen: Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Eigenvalues of elliptic operators -- Tools -- The first eigenvalue of the Laplacian-Dirichlet -- The second eigenvalue of the Laplacian-Dirichlet -- The other Dirichlet eigenvalues -- Functions of Dirichlet eigenvalues -- Other boundary conditions for the Laplacian -- Eigenvalues of Schrödinger operators -- Non-homogeneous strings and membranes -- Optimal conductivity -- The bi-Laplacian operator.

Problems linking the shape of a domain or the coefficients of an elliptic operator to the sequence of its eigenvalues are among the most fascinating of mathematical analysis. In this book, we focus on extremal problems. For instance, we look for a domain which minimizes or maximizes a given eigenvalue of the Laplace operator with various boundary conditions and various geometric constraints. We also consider the case of functions of eigenvalues. We investigate similar questions for other elliptic operators, such as the Schrödinger operator, non homogeneous membranes, or the bi-Laplacian, and we look at optimal composites and optimal insulation problems in terms of eigenvalues. Providing also a self-contained presentation of classical isoperimetric inequalities for eigenvalues and 30 open problems, this book will be useful for pure and applied mathematicians, particularly those interested in partial differential equations, the calculus of variations, differential geometry, or spectral theory.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha