TEST - Catálogo BURRF
   

Suites de Sturm, indice de Maslov et périodicité de Bott / by Jean Barge, Jean Lannes.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Progress in Mathematics ; 267Editor: Basel : Birkhäuser Basel, 2008Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783764387105
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA612-612.8
Recursos en línea:
Contenidos:
Algèbre linéaire symplectique -- Sur la «composante connexe» du point base dans la lagrangienne infinie -- Le théorème fondamental de la K-théorie hermitienne, à la Karoubi-Villamayor -- Suites de Sturm et H2 de l’homomorphisme hyperbolique -- Généralisations.
Resumen: La théorie classique des suites de Sturm fournit un algorithme pour déterminer le nombre de racines d’un polynôme à coefficients réels contenues dans un intervalle donné. L’objet principal de ce mémoire est de montrer qu’une généralisation adéquate de la théorie des suites de Sturm fournit entre autres choses: une notion d’indice de Maslov pour un lacet algébrique de lagrangiens défini sur un anneau commutatif; une démonstration du théorème fondamental de la K-théorie (algébrique) hermitienne, théorème dû à M. Karoubi; une démonstration des théorèmes de périodicité de Bott (topologique), dans l’esprit des travaux de F. Latour; un calcul du groupe K2 relatif, symplectique-linéaire, pour tous les anneaux commutatifs, dans l’esprit des travaux de R. Sharpe. Le livre est dans la mesure du possible « self-contained » et élémentaire: il met essentiellement en oeuvre des arguments d’algèbre linéaire ou bilinéaire. Il présente une approche unifiée de l’indice de Maslov en termes de suites de Sturm et de formes quadratiques.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Algèbre linéaire symplectique -- Sur la «composante connexe» du point base dans la lagrangienne infinie -- Le théorème fondamental de la K-théorie hermitienne, à la Karoubi-Villamayor -- Suites de Sturm et H2 de l’homomorphisme hyperbolique -- Généralisations.

La théorie classique des suites de Sturm fournit un algorithme pour déterminer le nombre de racines d’un polynôme à coefficients réels contenues dans un intervalle donné. L’objet principal de ce mémoire est de montrer qu’une généralisation adéquate de la théorie des suites de Sturm fournit entre autres choses: une notion d’indice de Maslov pour un lacet algébrique de lagrangiens défini sur un anneau commutatif; une démonstration du théorème fondamental de la K-théorie (algébrique) hermitienne, théorème dû à M. Karoubi; une démonstration des théorèmes de périodicité de Bott (topologique), dans l’esprit des travaux de F. Latour; un calcul du groupe K2 relatif, symplectique-linéaire, pour tous les anneaux commutatifs, dans l’esprit des travaux de R. Sharpe. Le livre est dans la mesure du possible « self-contained » et élémentaire: il met essentiellement en oeuvre des arguments d’algèbre linéaire ou bilinéaire. Il présente une approche unifiée de l’indice de Maslov en termes de suites de Sturm et de formes quadratiques.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha