TEST - Catálogo BURRF
   

Tropical Algebraic Geometry / by Ilia Itenberg, Grigory Mikhalkin, Eugenii Shustin.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Oberwolfach Seminars ; 35Editor: Basel : Birkhäuser Basel, 2007Descripción: viii, 103 páginas 30 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783764383107
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA564-609
Recursos en línea:
Contenidos:
Preface -- 1. Introduction to tropical geometry - Images under the logarithm - Amoebas - Tropical curves -- 2. Patchworking of algebraic varieties - Toric geometry - Viro's patchworking method - Patchworking of singular algebraic surfaces - Tropicalization in the enumeration of nodal curves -- 3. Applications of tropical geometry to enumerative geometry - Tropical hypersurfaces - Correspondence theorem - Welschinger invariants -- Bibliography.
Resumen: Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real varieties. These notes present an introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- 1. Introduction to tropical geometry - Images under the logarithm - Amoebas - Tropical curves -- 2. Patchworking of algebraic varieties - Toric geometry - Viro's patchworking method - Patchworking of singular algebraic surfaces - Tropicalization in the enumeration of nodal curves -- 3. Applications of tropical geometry to enumerative geometry - Tropical hypersurfaces - Correspondence theorem - Welschinger invariants -- Bibliography.

Tropical geometry is algebraic geometry over the semifield of tropical numbers, i.e., the real numbers and negative infinity enhanced with the (max,+)-arithmetics. Geometrically, tropical varieties are much simpler than their classical counterparts. Yet they carry information about complex and real varieties. These notes present an introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha