TEST - Catálogo BURRF
   

Material Designs and New Physical Properties in MX- and MMX-Chain Compounds / edited by Masahiro Yamashita, Hiroshi Okamoto.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Vienna : Springer Vienna : Imprint: Springer, 2013Descripción: Ix, 270 páginas 190 ilustraciones, 45 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783709113172
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QD410-412.5
Recursos en línea:
Contenidos:
1 General Intoruduction S. Takaishi and M. Yamashita -- 2 MX-Chain Compounds -- 2.1 Pt(II)-Pt(IV) and Pd(II)-Pd(IV) Mixed-Valence Compounds H. Matsuzaki and H. Okamoto -- 2.2 Ni(III) Mott-Hubbard Compounds S. Takaishi and M. Yamashita -- 2.3 Pd(III) Mott-Hubbard Compounds S. Takaishi and M. Yamashita -- 2.4 Photoinduced Phase Transitions in MX-Chain Compounds H. Matsuzaki and H. Okamoto -- 2.5 Nonlinear Electrical Conductivity, Current Oscillation and Its Control in Halogen-Bridged Nickel(III) Compounds H. Kishida and A. Nakamura -- 2.6 Gigantic Third-Order Optical Nonlinearity of Halogen-Bridged Nickel(III) Compounds H. Kishida and H. Okamoto -- 2.7 Theory of MX-Chain Compounds K. Iwano -- 3 MMX-Chain Compounds -- 3.1 Crystal Structures and Properties of MMX-Chain Compounds Based on Dithiocarboxylato-Bridged Dinuclear Complexes M. Mitsumi -- 3.2 POP-Type MMX-Chain Compounds with Binary Counter-Cations and Vapochromism H. Iguchi, S. Takaishi and M. Yamashita -- 3.3 Photoinduced Phase Transitions in MMX-Chain Compounds H. Matsuzaki and H. Okamoto -- 3.4 Theory of MMX-Chain Compounds K. Yonemitsu.
Resumen: This is the first book to comprehensively address the recent developments in both the experimental and theoretical aspects of quasi-one-dimensional halogen-bridged mono- (MX) and binuclear metal (MMX) chain complexes of Pt, Pd and Ni. These complexes have one-dimensional electronic structures, which cause the various physical properties as well as electronic structures. In most MX-chain complexes, the Pt and Pd units are in M(II)-M(IV) mixed valence or charge density wave (CDW) states due to electron-phonon interactions, and Ni compounds are in Ni(III) averaged valence or Mott-Hubbard states due to the on-site Coulomb repulsion. More recently, Pd(III) Mott-Hubbard (MH) states have been realized in the ground state by using the chemical pressure. Pt and Pd chain complexes undergo photo-induced phase transitions from CDW to MH or metal states, and Ni chain complexes undergo photo-induced phase transitions from MH to metal states. Ni chain complexes with strong electron correlations show tremendous third-order optical nonlinearity and nonlinear electrical conductivities. They can be explained theoretically by using the extended Peierls-Hubbard model. For MMX-chain complexes, averaged valence, CDW, charge polarization, and alternating charge polarization states have been realized by using chemical modification and external stimuli, such as temperature, photo-irradiation, pressure, and water vapor. All of the electronic structures and phase transitions can be explained theoretically.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

1 General Intoruduction S. Takaishi and M. Yamashita -- 2 MX-Chain Compounds -- 2.1 Pt(II)-Pt(IV) and Pd(II)-Pd(IV) Mixed-Valence Compounds H. Matsuzaki and H. Okamoto -- 2.2 Ni(III) Mott-Hubbard Compounds S. Takaishi and M. Yamashita -- 2.3 Pd(III) Mott-Hubbard Compounds S. Takaishi and M. Yamashita -- 2.4 Photoinduced Phase Transitions in MX-Chain Compounds H. Matsuzaki and H. Okamoto -- 2.5 Nonlinear Electrical Conductivity, Current Oscillation and Its Control in Halogen-Bridged Nickel(III) Compounds H. Kishida and A. Nakamura -- 2.6 Gigantic Third-Order Optical Nonlinearity of Halogen-Bridged Nickel(III) Compounds H. Kishida and H. Okamoto -- 2.7 Theory of MX-Chain Compounds K. Iwano -- 3 MMX-Chain Compounds -- 3.1 Crystal Structures and Properties of MMX-Chain Compounds Based on Dithiocarboxylato-Bridged Dinuclear Complexes M. Mitsumi -- 3.2 POP-Type MMX-Chain Compounds with Binary Counter-Cations and Vapochromism H. Iguchi, S. Takaishi and M. Yamashita -- 3.3 Photoinduced Phase Transitions in MMX-Chain Compounds H. Matsuzaki and H. Okamoto -- 3.4 Theory of MMX-Chain Compounds K. Yonemitsu.

This is the first book to comprehensively address the recent developments in both the experimental and theoretical aspects of quasi-one-dimensional halogen-bridged mono- (MX) and binuclear metal (MMX) chain complexes of Pt, Pd and Ni. These complexes have one-dimensional electronic structures, which cause the various physical properties as well as electronic structures. In most MX-chain complexes, the Pt and Pd units are in M(II)-M(IV) mixed valence or charge density wave (CDW) states due to electron-phonon interactions, and Ni compounds are in Ni(III) averaged valence or Mott-Hubbard states due to the on-site Coulomb repulsion. More recently, Pd(III) Mott-Hubbard (MH) states have been realized in the ground state by using the chemical pressure. Pt and Pd chain complexes undergo photo-induced phase transitions from CDW to MH or metal states, and Ni chain complexes undergo photo-induced phase transitions from MH to metal states. Ni chain complexes with strong electron correlations show tremendous third-order optical nonlinearity and nonlinear electrical conductivities. They can be explained theoretically by using the extended Peierls-Hubbard model. For MMX-chain complexes, averaged valence, CDW, charge polarization, and alternating charge polarization states have been realized by using chemical modification and external stimuli, such as temperature, photo-irradiation, pressure, and water vapor. All of the electronic structures and phase transitions can be explained theoretically.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha