TEST - Catálogo BURRF
   

Ultra-Wideband Pulse-based Radio : Reliable Communication over a Wideband Channel / by Wim Vereecken, Michiel Steyaert.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Analog Circuits and Signal ProcessingEditor: Dordrecht : Springer Netherlands, 2009Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9789048124503
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK7888.4
Recursos en línea:
Contenidos:
Digital Communications Over Analog Channels -- Modulation-Aware Error Coding -- Modulation-Aware Decoding: Signal Reconstruction -- Benefits of ISI in the Indoor Environment -- Pulse-Based Wideband Radio -- Reference Design of a Pulse-Based Receive Unit -- Nonlinear Loaded Open-Loop Amplifiers.
Resumen: Today's booming expanse of personal wireless radio communications is a rich source of new challenges for the designer of the underlying enabling technologies. Because the wireless channel is a shared transmission medium with only very limited resources, a trade-off must be made between mobility and the number of simultaneous users in a confined geographical area. Ultra-Wideband Pulse-based Radio lays the foundations of a new radio transceiver architecture, based on the Ultra-Wideband pulse-based radio principle. Instead of a continuous-time modulated carrier, the pulse-based radio system uses short electromagnetic pulses with a wide spectral footprint. This has considerable advantages for the reliability of a wireless link in an indoor environment. However, what is not accounted for in most high-level theoretical perspectives, is that a wide transmission bandwidth opens up a Pandora's box of many complications at receiver side. A real-world wireless channel, for example, suffers from multipath reflections: multiple, delayed versions of the same signal arrive at the receive antenna and start to interfere with one another, an effect that is known as intersymbol interference. Also, a wide transmission band is a wide open door for in-band interfering signals, caused by other transmitters in the same frequency band. A specially crafted interferer suppression and signal reconstruction (ISSR) algorithm is presented in this book. Without active intervention from the transmitter, the ISSR algorithm is capable of on-the-fly cleaning of frequency bands which have fallen victim to multipath fading or narrowband interference. The unique blend of pulse-based radio, a simple modulation scheme and a powerful signal reconstruction system make the presented pulse-based radio system a very promising alternative for the high-end (but complex) OFDM-based modulation schemes currently used in many WLAN applications.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Digital Communications Over Analog Channels -- Modulation-Aware Error Coding -- Modulation-Aware Decoding: Signal Reconstruction -- Benefits of ISI in the Indoor Environment -- Pulse-Based Wideband Radio -- Reference Design of a Pulse-Based Receive Unit -- Nonlinear Loaded Open-Loop Amplifiers.

Today's booming expanse of personal wireless radio communications is a rich source of new challenges for the designer of the underlying enabling technologies. Because the wireless channel is a shared transmission medium with only very limited resources, a trade-off must be made between mobility and the number of simultaneous users in a confined geographical area. Ultra-Wideband Pulse-based Radio lays the foundations of a new radio transceiver architecture, based on the Ultra-Wideband pulse-based radio principle. Instead of a continuous-time modulated carrier, the pulse-based radio system uses short electromagnetic pulses with a wide spectral footprint. This has considerable advantages for the reliability of a wireless link in an indoor environment. However, what is not accounted for in most high-level theoretical perspectives, is that a wide transmission bandwidth opens up a Pandora's box of many complications at receiver side. A real-world wireless channel, for example, suffers from multipath reflections: multiple, delayed versions of the same signal arrive at the receive antenna and start to interfere with one another, an effect that is known as intersymbol interference. Also, a wide transmission band is a wide open door for in-band interfering signals, caused by other transmitters in the same frequency band. A specially crafted interferer suppression and signal reconstruction (ISSR) algorithm is presented in this book. Without active intervention from the transmitter, the ISSR algorithm is capable of on-the-fly cleaning of frequency bands which have fallen victim to multipath fading or narrowband interference. The unique blend of pulse-based radio, a simple modulation scheme and a powerful signal reconstruction system make the presented pulse-based radio system a very promising alternative for the high-end (but complex) OFDM-based modulation schemes currently used in many WLAN applications.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha