TEST - Catálogo BURRF
   

Structured Matrix Based Methods for Approximate Polynomial GCD / by Paola Boito.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Tesi/Theses ; 15Editor: Pisa : Edizioni della Normale, 2011Descripción: 250 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9788876423819
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA150-272
Recursos en línea:
Contenidos:
i. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index.
Resumen: Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. 
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

i. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index.

Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. 

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha