TEST - Catálogo BURRF
   

Peacocks and Associated Martingales, with Explicit Constructions / by Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor.

Por: Colaborador(es): Tipo de material: TextoTextoSeries B&SS — Bocconi & Springer SeriesEditor: Milano : Springer Milan, 2011Descripción: xxxii, 388 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9788847019089
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA273.A1-274.9
Recursos en línea:
Contenidos:
Some Examples of Peacocks -- The Sheet Method -- The Time Reversal Method -- The Time Inversion Method -- The Sato Process Method -- The Stochastic Differential Equation Method -- The Skorokhod Embedding (SE) Method. Comparison of Multidimensional Marginals.
Resumen: We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings… They are developed in eight chapters, with about a hundred of exercises.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Some Examples of Peacocks -- The Sheet Method -- The Time Reversal Method -- The Time Inversion Method -- The Sato Process Method -- The Stochastic Differential Equation Method -- The Skorokhod Embedding (SE) Method. Comparison of Multidimensional Marginals.

We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings… They are developed in eight chapters, with about a hundred of exercises.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha