TEST - Catálogo BURRF
   

Electromagnetic Vibration Energy Harvesting Devices : Architectures, Design, Modeling and Optimization / by Dirk Spreemann, Yiannos Manoli.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Springer Series in Advanced Microelectronics ; 35Editor: Dordrecht : Springer Netherlands, 2012Descripción: xvii, 196 páginas 172 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9789400729445
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK7867-7867.5
Recursos en línea:
Contenidos:
Basic Analytical Tools For The Design Of Resonant Vibration Transducers -- Power And Voltage Optimization Approach -- Optimization Results And Comparison -- Experimental Verification Of The Simulation Models -- Coil Topology Optimization For Transducers Based On Cylindrical Magnets -- Application Oriented Design Of A Prototype Vibration Transducer.
Resumen: Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Basic Analytical Tools For The Design Of Resonant Vibration Transducers -- Power And Voltage Optimization Approach -- Optimization Results And Comparison -- Experimental Verification Of The Simulation Models -- Coil Topology Optimization For Transducers Based On Cylindrical Magnets -- Application Oriented Design Of A Prototype Vibration Transducer.

Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the designer of electromagnetic vibration transducers who wishes to have a greater in-depth understanding for maximizing the output performance.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha