TEST - Catálogo BURRF
   

Approximation theory xiv: san antonio 2013 / edited by Gregory E. Fasshauer, Larry L. Schumaker.

Colaborador(es): Tipo de material: TextoTextoSeries Springer Proceedings in Mathematics & Statistics ; 83Editor: Cham : Springer International Publishing : Springer, 2014Descripción: xiii, 395 páginas : 70 ilustraciones, 25 ilustraciones en colorTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319064048
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA401-425
Recursos en línea:
Contenidos:
Isogeometric Method for the Elliptic Monge-Ampère Equation -- Dual Compatible Splines on non Tensor Product Meshes -- Multivariate Anisotropic Interpolation on the Torus -- A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery -- On a New Proximity Condition for Manifold-Valued Subdivision Schemes -- Wachspress and Mean Value Coordinates -- Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces on Squares and Cubes -- Suitability of Parametric Shepard Interpolation for Nonrigid Image Registration -- Parabolic Molecules: Curvelets, Shearlets and Beyond -- Microlocal Analysis of Singularities from Directional Multiscale Representations -- Barycentric Interpolation -- Numerical Determination of Extremal Points and Asymptotic Order of Discrete Minimal Riesz Energy for Regular Compact Sets -- Eigenvalue Sequences of Positive Integral Operators and Moduli of Smoothness -- Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices -- On Non-degenerate Rational Approximation -- Multivariate C1-continuous Splines on the Alfeld Split of a Simplex -- On Convergence of Singular Integral Operators with Radial Kernels -- Lower Bound on the Dimension of Trivariate Splines on Cells -- One Characterization of Lagrange Projectors -- Minimal versus Orthogonal Projections onto Hyperplanes in ?n1 and ?n? -- On Hermite Interpolation by Splines with Continuous Third Derivatives -- Best Polynomial Approximation on the Unit Sphere and the Unit Ball -- Support Vector Machines in Reproducing Kernel Hilbert Spaces versus Banach Spaces.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Isogeometric Method for the Elliptic Monge-Ampère Equation -- Dual Compatible Splines on non Tensor Product Meshes -- Multivariate Anisotropic Interpolation on the Torus -- A Generalized Class of Hard Thresholding Algorithms for Sparse Signal Recovery -- On a New Proximity Condition for Manifold-Valued Subdivision Schemes -- Wachspress and Mean Value Coordinates -- Hermite and Bernstein Style Basis Functions for Cubic Serendipity Spaces on Squares and Cubes -- Suitability of Parametric Shepard Interpolation for Nonrigid Image Registration -- Parabolic Molecules: Curvelets, Shearlets and Beyond -- Microlocal Analysis of Singularities from Directional Multiscale Representations -- Barycentric Interpolation -- Numerical Determination of Extremal Points and Asymptotic Order of Discrete Minimal Riesz Energy for Regular Compact Sets -- Eigenvalue Sequences of Positive Integral Operators and Moduli of Smoothness -- Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices -- On Non-degenerate Rational Approximation -- Multivariate C1-continuous Splines on the Alfeld Split of a Simplex -- On Convergence of Singular Integral Operators with Radial Kernels -- Lower Bound on the Dimension of Trivariate Splines on Cells -- One Characterization of Lagrange Projectors -- Minimal versus Orthogonal Projections onto Hyperplanes in ?n1 and ?n? -- On Hermite Interpolation by Splines with Continuous Third Derivatives -- Best Polynomial Approximation on the Unit Sphere and the Unit Ball -- Support Vector Machines in Reproducing Kernel Hilbert Spaces versus Banach Spaces.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha