TEST - Catálogo BURRF
   

Machine learning in medicine - cookbook two / Ton J. Cleophas, Aeilko H. Zwinderman.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in Statistics ; 49Editor: Cham : Springer International Publishing : Springer, 2014Descripción: xi, 140 páginas : 49 ilustracionesTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319074139
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • R1
Recursos en línea:
Contenidos:
Preface. I Cluster models -- Nearest Neighbors for Classifying New Medicines -- Predicting High-Risk-Bin Memberships -- Predicting Outlier Memberships -- Linear Models -- Polynomial Regression for Outcome Categories -- Automatic Nonparametric Tests for Predictor Categories- Random Intercept Models for Both Outcome and Predictor -- Automatic Regression for Maximizing Linear Relationships -- Simulation Models for Varying Predictors -- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data -- Two Stage Least Squares for Linear Models with Problematic -- Autoregressive Models for Longitudinal Data. II Rules Models -- Item Response Modeling for Analyzing Quality of Life with Better Precision -- Survival Studies with Varying Risks of Dying -- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis -- Automatic Data Mining for the Best Treatment of a Disease -- Pareto Charts for Identifying the Main Factors of Multifactorial -- Radial Basis Neural Networks for Multidimensional Gaussian -- Automatic Modeling for Drug Efficacy Prediction -- Automatic Modeling for Clinical Event Prediction -- Automatic Newton Modeling in Clinical Pharmacology -- Index.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface. I Cluster models -- Nearest Neighbors for Classifying New Medicines -- Predicting High-Risk-Bin Memberships -- Predicting Outlier Memberships -- Linear Models -- Polynomial Regression for Outcome Categories -- Automatic Nonparametric Tests for Predictor Categories- Random Intercept Models for Both Outcome and Predictor -- Automatic Regression for Maximizing Linear Relationships -- Simulation Models for Varying Predictors -- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data -- Two Stage Least Squares for Linear Models with Problematic -- Autoregressive Models for Longitudinal Data. II Rules Models -- Item Response Modeling for Analyzing Quality of Life with Better Precision -- Survival Studies with Varying Risks of Dying -- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis -- Automatic Data Mining for the Best Treatment of a Disease -- Pareto Charts for Identifying the Main Factors of Multifactorial -- Radial Basis Neural Networks for Multidimensional Gaussian -- Automatic Modeling for Drug Efficacy Prediction -- Automatic Modeling for Clinical Event Prediction -- Automatic Newton Modeling in Clinical Pharmacology -- Index.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha