TEST - Catálogo BURRF
   

Real world data mining applications / edited by Mahmoud Abou-Nasr, Stefan Lessmann, Robert Stahlbock, Gary M. Weiss.

Colaborador(es): Tipo de material: TextoTextoSeries Annals of Information Systems ; 17Editor: Cham : Springer International Publishing : Springer, 2015Descripción: xvi, 418 páginas : 144 ilustraciones, 96 ilustraciones en colorTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319078120
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • HF54.5-54.56
Recursos en línea:
Contenidos:
Introduction -- What Data Scientists can Learn from History -- On Line Mining of Cyclic Association Rules From Parallel Dimension Hierarchies -- PROFIT: A Projected Clustering Technique -- Multi-Label Classification with a Constrained Minimum Cut Model -- On the Selection of Dimension Reduction Techniques for Scientific Applications -- Relearning Process for SPRT In Structural Change Detection of Time-Series Data -- K-means clustering on a classifier-induced representation space: application to customer contact personalization -- Dimensionality Reduction using Graph Weighted Subspace Learning for Bankruptcy Prediction -- Click Fraud Detection: Adversarial Pattern Recognition over 5 years at Microsoft -- A Novel Approach for Analysis of 'Real World' Data: A Data Mining Engine for Identification of Multi-author Student Document Submission -- Data Mining Based Tax Audit Selection: A Case Study of a Pilot Project at the Minnesota Department of Revenue -- A nearest neighbor approach to build a readable risk score for breast cancer -- Machine Learning for Medical Examination Report Processing -- Data Mining Vortex Cores Concurrent with Computational Fluid Dynamics Simulations -- A Data Mining Based Method for Discovery of Web Services and their Compositions -- Exploiting Terrain Information for Enhancing Fuel Economy of Cruising Vehicles by Supervised Training of Recurrent Neural Optimizers -- Exploration of Flight State and Control System Parameters for Prediction of Helicopter Loads via Gamma Test and Machine Learning Techniques -- Multilayer Semantic Analysis In Image Databases.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- What Data Scientists can Learn from History -- On Line Mining of Cyclic Association Rules From Parallel Dimension Hierarchies -- PROFIT: A Projected Clustering Technique -- Multi-Label Classification with a Constrained Minimum Cut Model -- On the Selection of Dimension Reduction Techniques for Scientific Applications -- Relearning Process for SPRT In Structural Change Detection of Time-Series Data -- K-means clustering on a classifier-induced representation space: application to customer contact personalization -- Dimensionality Reduction using Graph Weighted Subspace Learning for Bankruptcy Prediction -- Click Fraud Detection: Adversarial Pattern Recognition over 5 years at Microsoft -- A Novel Approach for Analysis of 'Real World' Data: A Data Mining Engine for Identification of Multi-author Student Document Submission -- Data Mining Based Tax Audit Selection: A Case Study of a Pilot Project at the Minnesota Department of Revenue -- A nearest neighbor approach to build a readable risk score for breast cancer -- Machine Learning for Medical Examination Report Processing -- Data Mining Vortex Cores Concurrent with Computational Fluid Dynamics Simulations -- A Data Mining Based Method for Discovery of Web Services and their Compositions -- Exploiting Terrain Information for Enhancing Fuel Economy of Cruising Vehicles by Supervised Training of Recurrent Neural Optimizers -- Exploration of Flight State and Control System Parameters for Prediction of Helicopter Loads via Gamma Test and Machine Learning Techniques -- Multilayer Semantic Analysis In Image Databases.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha