TEST - Catálogo BURRF
   

Machine learning in medicine - cookbook / Ton J. Cleophas, Aeilko H. Zwinderman.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in StatisticsEditor: Cham : Springer International Publishing : Springer, 2014Descripción: xi, 137 páginas : 14 ilustracionesTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319041810
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • R1
Recursos en línea:
Contenidos:
I Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients) -- II Linear Models -- Linear, Logistic and Cox Regression for Outcome Prediction with Unpaired Data (20, 55 and 60 Patients) -- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients) Exact P-Values -- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients). III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients) -- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients) -- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families) -- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Index.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

I Cluster Models -- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients) -- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients) -- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients) -- II Linear Models -- Linear, Logistic and Cox Regression for Outcome Prediction with Unpaired Data (20, 55 and 60 Patients) -- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians) -- Generalized Linear Models for Predicting Event-Rates (50 Patients) Exact P-Values -- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients) -- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients) -- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients) -- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients) -- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients) -- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients). III Rules Models -- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients) -- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons) -- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients) -- Decision Trees for Decision Analysis (1004 and 953 Patients) -- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients) -- Stochastic Processes for Long Term Predictions from Short Term Observations -- Optimal Binning for Finding High Risk Cut-offs (1445 Families) -- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians) -- Index.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha