TEST - Catálogo BURRF
   

Classical and quantum dynamics : from classical paths to path integrals / Walter Dittrich, Martin Reuter.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Graduate Texts in PhysicsEditor: Cham : Springer International Publishing : Springer, 2016Edición: 4th ed. 2016Descripción: xii, 461 páginas : 2 ilustracionesTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319216775
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC173.96-174.52
Recursos en línea:
Contenidos:
Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Analogues to Berry’s Phase -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Appendix -- Solutions -- Index.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Analogues to Berry’s Phase -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Appendix -- Solutions -- Index.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha