Anandam, Victor.

Harmonic Functions and Potentials on Finite or Infinite Networks / by Victor Anandam. - x, 141 páginas recurso en línea. - Lecture Notes of the Unione Matematica Italiana, 12 1862-9113 ; .

Springer eBooks

1 Laplace Operators on Networks and Trees -- 2 Potential Theory on Finite Networks -- 3 Harmonic Function Theory on Infinite Networks -- 4 Schrödinger Operators and Subordinate Structures on Infinite Networks -- 5 Polyharmonic Functions on Trees.

Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.

9783642213991

10.1007/9783642213991 doi

QA404.7-405