Suites de Sturm, indice de Maslov et périodicité de Bott /
by Jean Barge, Jean Lannes.
- recurso en línea.
- Progress in Mathematics ; 267 .
Springer eBooks
Algèbre linéaire symplectique -- Sur la «composante connexe» du point base dans la lagrangienne infinie -- Le théorème fondamental de la K-théorie hermitienne, à la Karoubi-Villamayor -- Suites de Sturm et H2 de l’homomorphisme hyperbolique -- Généralisations.
La théorie classique des suites de Sturm fournit un algorithme pour déterminer le nombre de racines d’un polynôme à coefficients réels contenues dans un intervalle donné. L’objet principal de ce mémoire est de montrer qu’une généralisation adéquate de la théorie des suites de Sturm fournit entre autres choses: une notion d’indice de Maslov pour un lacet algébrique de lagrangiens défini sur un anneau commutatif; une démonstration du théorème fondamental de la K-théorie (algébrique) hermitienne, théorème dû à M. Karoubi; une démonstration des théorèmes de périodicité de Bott (topologique), dans l’esprit des travaux de F. Latour; un calcul du groupe K2 relatif, symplectique-linéaire, pour tous les anneaux commutatifs, dans l’esprit des travaux de R. Sharpe. Le livre est dans la mesure du possible « self-contained » et élémentaire: il met essentiellement en oeuvre des arguments d’algèbre linéaire ou bilinéaire. Il présente une approche unifiée de l’indice de Maslov en termes de suites de Sturm et de formes quadratiques.