TEST - Catálogo BURRF
   

Hyperspectral Data Compression / edited by Giovanni Motta, Francesco Rizzo, James A. Storer.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Springer US, 2006Descripción: XI, 415 páginas, recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387286006
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA75.5-76.95
Recursos en línea:
Contenidos:
An Architecture for the Compression of Hyperspectral Imagery -- Lossless Predictive Compression of Hyperspectral Images -- Lossless Hyperspectral Image Compression via Linear Prediction -- Lossless Compression of Ultraspectral Sounder Data -- Locally Optimal Partitioned Vector Quantization of Hyperspectral Data -- Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM -- Joint Classification and Compression of Hyperspectral Images -- Predictive Coding of Hyperspectral Images -- Coding of Hyperspectral Imagery with Trellis-Coded Quantization -- Three-Dimensional Wavelet-Based Compression of Hyperspectral Images -- Spectral/Spatial Hyperspectral Image Compression -- Compression of Earth Science Data with JPEG2000 -- Spectral Ringing Artifacts in Hyperspectral Image Data Compression.
Resumen: HYPERSPECTRAL DATA COMPRESSION presents the most recent results in the field of compression of remote sensing 3D data, with a focus on multispectral and hyperspectral imagery. This book is essential for researchers working across related fields including: multi-dimensional data compression, multispectral and hyperspectral data archives, remote sensing, scientific image processing, military and aerospace image processing, image segmentation, image classification, and target detection.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

An Architecture for the Compression of Hyperspectral Imagery -- Lossless Predictive Compression of Hyperspectral Images -- Lossless Hyperspectral Image Compression via Linear Prediction -- Lossless Compression of Ultraspectral Sounder Data -- Locally Optimal Partitioned Vector Quantization of Hyperspectral Data -- Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM -- Joint Classification and Compression of Hyperspectral Images -- Predictive Coding of Hyperspectral Images -- Coding of Hyperspectral Imagery with Trellis-Coded Quantization -- Three-Dimensional Wavelet-Based Compression of Hyperspectral Images -- Spectral/Spatial Hyperspectral Image Compression -- Compression of Earth Science Data with JPEG2000 -- Spectral Ringing Artifacts in Hyperspectral Image Data Compression.

HYPERSPECTRAL DATA COMPRESSION presents the most recent results in the field of compression of remote sensing 3D data, with a focus on multispectral and hyperspectral imagery. This book is essential for researchers working across related fields including: multi-dimensional data compression, multispectral and hyperspectral data archives, remote sensing, scientific image processing, military and aerospace image processing, image segmentation, image classification, and target detection.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha