TEST - Catálogo BURRF
   

Design and Optimization of Passive UHF RFID Systems / by Jari-Pascal Curty, Michel Declercq, Catherine Dehollain, Norbert Joehl.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Springer US, 2007Descripción: Ix, 148 páginas, recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780387447100
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK5102.9
Recursos en línea:
Contenidos:
Wireless Power Transmission -- Analysis of the Modified-Greinacher Rectifier -- to RFID -- Backscattering architecture and choice of modulation type -- Backscattering modulation analysis -- RFID Tag design -- High frequency interrogator architecture and analysis -- Conclusion.
Resumen: Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. Active tags require an internal power source, while passive tags do not. Design and Optimization of UHF RFID Systems considers the analysis, design and optimization of UHF passive RFID systems for long-range applications. There are many key aspects thoroughly described in the text: Wireless power transmission Tag-to-reader backscattering communication Reader and tag architectures and IC design. Wireless power transmission is studied using a rectifier (a fundamental tag building-block) for which there has been a proven prediction model developed. Proposed is a theoretical analysis of possible backscattering modulations, as well as an experimental procedure to measure how the impedance modulation at the tag side, affects the signal at the reader. Finally, a complete tag design achieving a read range of 12 m at 2.45 GHz (4 W EIRP) is provided. At the time of writing, the results of this design outperform any other available IC tag.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Wireless Power Transmission -- Analysis of the Modified-Greinacher Rectifier -- to RFID -- Backscattering architecture and choice of modulation type -- Backscattering modulation analysis -- RFID Tag design -- High frequency interrogator architecture and analysis -- Conclusion.

Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is an object that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chip-based RFID tags contain silicon chips and antennas. Active tags require an internal power source, while passive tags do not. Design and Optimization of UHF RFID Systems considers the analysis, design and optimization of UHF passive RFID systems for long-range applications. There are many key aspects thoroughly described in the text: Wireless power transmission Tag-to-reader backscattering communication Reader and tag architectures and IC design. Wireless power transmission is studied using a rectifier (a fundamental tag building-block) for which there has been a proven prediction model developed. Proposed is a theoretical analysis of possible backscattering modulations, as well as an experimental procedure to measure how the impedance modulation at the tag side, affects the signal at the reader. Finally, a complete tag design achieving a read range of 12 m at 2.45 GHz (4 W EIRP) is provided. At the time of writing, the results of this design outperform any other available IC tag.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha