TEST - Catálogo BURRF
   

A New Approach to Differential Geometry using Clifford's Geometric Algebra / by John Snygg.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2012Descripción: xvii, 465 páginas 102 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9780817682835
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA641-670
Recursos en línea:
Contenidos:
Preface -- Introduction -- Clifford Algebra in Euclidean 3-Space -- Clifford Algebra in Minkowski 4-Space -- Clifford Algebra in Flat n-Space -- Curved Spaces -- The Gauss-Bonnet Formula -- Non-Euclidean (Hyperbolic) Geometry -- Some Extrinsic Geometry in E^n -- Ruled Surfaces Continued -- Lines of Curvature -- Minimal Surfaces -- Some General Relativity -- Matrix Representation of a Clifford Algebra -- Construction of Coordinate Dirac Matrices -- A Few Terms of the Taylor's Series for the Urd?-Copernican Model for the Outer Planets -- A Few Terms of the Taylor's Series for Kepler's Orbits -- References -- Index.
Resumen: Differential geometry is the study of curvature and calculus of curves and surfaces.  Because of an historical accident, the Geometric Algebra devised by William Kingdom Clifford (1845–1879) has been overlooked in favor of the more complicated and less powerful formalism of differential forms and tangent vectors to deal with differential geometry.  Fortuitously a student who has completed an undergraduate course in linear algebra is better prepared to deal with the intricacies of Clifford algebra than with the formalism currently used.  Clifford algebra enables one to demonstrate a close relation between curvature and certain rotations.  This is an advantage both conceptually and computationally—particularly in higher dimensions. Key features and topics include: * a unique undergraduate-level approach to differential geometry; * brief biographies of historically relevant mathematicians and physicists; * some aspects of special and general relativity accessible to undergraduates with no knowledge of Newtonian physics; * chapter-by-chapter exercises. The textbook will also serve as a useful classroom resource primarily for undergraduates as well as beginning-level graduate students; researchers in the algebra and physics communities may also find the book useful as a self-study guide.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Introduction -- Clifford Algebra in Euclidean 3-Space -- Clifford Algebra in Minkowski 4-Space -- Clifford Algebra in Flat n-Space -- Curved Spaces -- The Gauss-Bonnet Formula -- Non-Euclidean (Hyperbolic) Geometry -- Some Extrinsic Geometry in E^n -- Ruled Surfaces Continued -- Lines of Curvature -- Minimal Surfaces -- Some General Relativity -- Matrix Representation of a Clifford Algebra -- Construction of Coordinate Dirac Matrices -- A Few Terms of the Taylor's Series for the Urd?-Copernican Model for the Outer Planets -- A Few Terms of the Taylor's Series for Kepler's Orbits -- References -- Index.

Differential geometry is the study of curvature and calculus of curves and surfaces.  Because of an historical accident, the Geometric Algebra devised by William Kingdom Clifford (1845–1879) has been overlooked in favor of the more complicated and less powerful formalism of differential forms and tangent vectors to deal with differential geometry.  Fortuitously a student who has completed an undergraduate course in linear algebra is better prepared to deal with the intricacies of Clifford algebra than with the formalism currently used.  Clifford algebra enables one to demonstrate a close relation between curvature and certain rotations.  This is an advantage both conceptually and computationally—particularly in higher dimensions. Key features and topics include: * a unique undergraduate-level approach to differential geometry; * brief biographies of historically relevant mathematicians and physicists; * some aspects of special and general relativity accessible to undergraduates with no knowledge of Newtonian physics; * chapter-by-chapter exercises. The textbook will also serve as a useful classroom resource primarily for undergraduates as well as beginning-level graduate students; researchers in the algebra and physics communities may also find the book useful as a self-study guide.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha