TEST - Catálogo BURRF
   

Simplicial Structures in Topology / by Davide L. Ferrario, Renzo A. Piccinini.

Por: Colaborador(es): Tipo de material: TextoTextoSeries CMS Books in Mathematics, Ouvrages de mathématiques de la SMCEditor: New York, NY : Springer New York : Imprint: Springer, 2011Descripción: xvI, 243 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781441972361
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA613-613.8
Recursos en línea:
Contenidos:
Preface -- Fundamental Concepts -- Simplicial Complexes -- Homology of Polyhedra -- Cohonology -- Triangulable Manifolds -- Homotopy Groups -- Bibliography -- Index.
Resumen: Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in a short introduction on obstruction theory. The text is more in tune with the original development of algebraic topology as given by Henri Poincaré (singular homology is not discussed). Illustrative examples throughout and extensive exercises at the end of each chapter for practice enhance the text. Advanced undergraduate and beginning graduate students will benefit from this book. Researchers and professionals interested in topology and applications of mathematics will also find this book useful.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Fundamental Concepts -- Simplicial Complexes -- Homology of Polyhedra -- Cohonology -- Triangulable Manifolds -- Homotopy Groups -- Bibliography -- Index.

Simplicial Structures in Topology provides a clear and comprehensive introduction to the subject. Ideas are developed in the first four chapters. The fifth chapter studies closed surfaces and gives their classification. The last chapter of the book is devoted to homotopy groups, which are used in a short introduction on obstruction theory. The text is more in tune with the original development of algebraic topology as given by Henri Poincaré (singular homology is not discussed). Illustrative examples throughout and extensive exercises at the end of each chapter for practice enhance the text. Advanced undergraduate and beginning graduate students will benefit from this book. Researchers and professionals interested in topology and applications of mathematics will also find this book useful.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha