TEST - Catálogo BURRF
   

Principles of Adaptive Filters and Self-learning Systems / by Anthony Zaknich ; edited by Michael J. Grimble, Michael A. Johnson.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Advanced Textbooks in Control and Signal ProcessingEditor: London : Springer London, 2005Descripción: xxii, 386 páginas 95 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781846281211
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK5102.9
Recursos en línea:
Contenidos:
Adaptive Filtering -- Linear Systems and Stochastic Processes -- Modelling -- Optimisation and Least Squares Estimation -- Parametric Signal and System Modelling -- Classical Filters and Spectral Analysis -- Optimum Wiener Filter -- Optimum Kalman Filter -- Power Spectral Density Analysis -- Adaptive Filter Theory -- Adaptive Finite Impulse Response Filters -- Frequency Domain Adaptive Filters -- Adaptive Volterra Filters -- Adaptive Control Systems -- Nonclassical Adaptive Systems -- to Neural Networks -- to Fuzzy Logic Systems -- to Genetic Algorithms -- Adaptive Filter Application -- Applications of Adaptive Signal Processing -- Generic Adaptive Filter Structures.
Resumen: Kalman and Wiener Filters, Neural Networks, Genetic Algorithms and Fuzzy Logic Systems Together in One Text Book How can a signal be processed for which there are few or no a priori data? Professor Zaknich provides an ideal textbook for one-semester introductory graduate or senior undergraduate courses in adaptive and self-learning systems for signal processing applications. Important topics are introduced and discussed sufficiently to give the reader adequate background for confident further investigation. The material is presented in a progression from a short introduction to adaptive systems through modelling, classical filters and spectral analysis to adaptive control theory, nonclassical adaptive systems and applications. Features: • Comprehensive review of linear and stochastic theory. • Design guide for practical application of the least squares estimation method and Kalman filters. • Study of classical adaptive systems together with neural networks, genetic algorithms and fuzzy logic systems and their combination to deal with such complex problems as underwater acoustic signal processing. • Tutorial problems and exercises which identify the significant points and demonstrate the practical relevance of the theory. • PDF Solutions Manual, available to tutors from springeronline.com, containing not just answers to the tutorial problems but also course outlines, sample examination material and project assignments to help in developing a teaching programme and to give ideas for practical investigations.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Adaptive Filtering -- Linear Systems and Stochastic Processes -- Modelling -- Optimisation and Least Squares Estimation -- Parametric Signal and System Modelling -- Classical Filters and Spectral Analysis -- Optimum Wiener Filter -- Optimum Kalman Filter -- Power Spectral Density Analysis -- Adaptive Filter Theory -- Adaptive Finite Impulse Response Filters -- Frequency Domain Adaptive Filters -- Adaptive Volterra Filters -- Adaptive Control Systems -- Nonclassical Adaptive Systems -- to Neural Networks -- to Fuzzy Logic Systems -- to Genetic Algorithms -- Adaptive Filter Application -- Applications of Adaptive Signal Processing -- Generic Adaptive Filter Structures.

Kalman and Wiener Filters, Neural Networks, Genetic Algorithms and Fuzzy Logic Systems Together in One Text Book How can a signal be processed for which there are few or no a priori data? Professor Zaknich provides an ideal textbook for one-semester introductory graduate or senior undergraduate courses in adaptive and self-learning systems for signal processing applications. Important topics are introduced and discussed sufficiently to give the reader adequate background for confident further investigation. The material is presented in a progression from a short introduction to adaptive systems through modelling, classical filters and spectral analysis to adaptive control theory, nonclassical adaptive systems and applications. Features: • Comprehensive review of linear and stochastic theory. • Design guide for practical application of the least squares estimation method and Kalman filters. • Study of classical adaptive systems together with neural networks, genetic algorithms and fuzzy logic systems and their combination to deal with such complex problems as underwater acoustic signal processing. • Tutorial problems and exercises which identify the significant points and demonstrate the practical relevance of the theory. • PDF Solutions Manual, available to tutors from springeronline.com, containing not just answers to the tutorial problems but also course outlines, sample examination material and project assignments to help in developing a teaching programme and to give ideas for practical investigations.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha