TEST - Catálogo BURRF
   

Metric Spaces / by Satish Shirali, Harkrishan L. Vasudeva.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: London : Springer London, 2006Descripción: viii, 222 páginas 21 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9781846282447
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA319-329.9
Recursos en línea:
Contenidos:
Preliminaries -- Basic Concepts -- Topology of a Metric Space -- Continuity -- Connected Spaces -- Compact Spaces -- Product Spaces.
Resumen: This volume provides a complete introduction to metric space theory for undergraduates. It covers the topology of metric spaces, continuity, connectedness, compactness and product spaces, and includes results such as the Tietze-Urysohn extension theorem, Picard's theorem on ordinary differential equations, and the set of discontinuities of the pointwise limit of a sequence of continuous functions. Key features include: a full chapter on product metric spaces, including a proof of Tychonoff’s Theorem a wealth of examples and counter-examples from real analysis, sequence spaces and spaces of continuous functions numerous exercises – with solutions to most of them – to test understanding. The only prerequisite is a familiarity with the basics of real analysis: the authors take care to ensure that no prior knowledge of measure theory, Banach spaces or Hilbert spaces is assumed. The material is developed at a leisurely pace and applications of the theory are discussed throughout, making this book ideal as a classroom text for third- and fourth-year undergraduates or as a self-study resource for graduate students and researchers.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preliminaries -- Basic Concepts -- Topology of a Metric Space -- Continuity -- Connected Spaces -- Compact Spaces -- Product Spaces.

This volume provides a complete introduction to metric space theory for undergraduates. It covers the topology of metric spaces, continuity, connectedness, compactness and product spaces, and includes results such as the Tietze-Urysohn extension theorem, Picard's theorem on ordinary differential equations, and the set of discontinuities of the pointwise limit of a sequence of continuous functions. Key features include: a full chapter on product metric spaces, including a proof of Tychonoff’s Theorem a wealth of examples and counter-examples from real analysis, sequence spaces and spaces of continuous functions numerous exercises – with solutions to most of them – to test understanding. The only prerequisite is a familiarity with the basics of real analysis: the authors take care to ensure that no prior knowledge of measure theory, Banach spaces or Hilbert spaces is assumed. The material is developed at a leisurely pace and applications of the theory are discussed throughout, making this book ideal as a classroom text for third- and fourth-year undergraduates or as a self-study resource for graduate students and researchers.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha