TEST - Catálogo BURRF
   

Vector-valued Laplace Transforms and Cauchy Problems : Second Edition / by Wolfgang Arendt, Charles J.K. Batty, Matthias Hieber, Frank Neubrander.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Monographs in Mathematics ; 96Editor: Basel : Springer Basel, 2011Descripción: xii, 540 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783034800877
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA370-380
Recursos en línea:
Contenidos:
Preface to the First Edition -- Preface to the Second Edition -- I Laplace Transforms and Well-Posedness of Cauchy Problems -- 1 The Laplace Integral -- 2 The Laplace Transform -- 3 Cauchy Problems -- II Tauberian Theorems and Cauchy Problems -- 4 Asymptotics of Laplace Transforms -- 5 Asymptotics of Solutions of Cauchy Problems -- III Applications and Examples -- 6 The Heat Equation -- 7 The Wave Equation -- 8 Translation Invariant Operators on Lp(Rn) -- A Vector-valued Holomorphic Functions -- B Closed Operators -- C Ordered Banach Spaces -- D Banach Spaces which Contain c0 -- E Distributions and Fourier Multipliers -- Bibliography -- Notation -- Index.
Resumen: This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. … The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended! Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface to the First Edition -- Preface to the Second Edition -- I Laplace Transforms and Well-Posedness of Cauchy Problems -- 1 The Laplace Integral -- 2 The Laplace Transform -- 3 Cauchy Problems -- II Tauberian Theorems and Cauchy Problems -- 4 Asymptotics of Laplace Transforms -- 5 Asymptotics of Solutions of Cauchy Problems -- III Applications and Examples -- 6 The Heat Equation -- 7 The Wave Equation -- 8 Translation Invariant Operators on Lp(Rn) -- A Vector-valued Holomorphic Functions -- B Closed Operators -- C Ordered Banach Spaces -- D Banach Spaces which Contain c0 -- E Distributions and Fourier Multipliers -- Bibliography -- Notation -- Index.

This monograph gives a systematic account of the theory of vector-valued Laplace transforms, ranging from representation theory to Tauberian theorems. In parallel, the theory of linear Cauchy problems and semigroups of operators is developed completely in the spirit of Laplace transforms. Existence and uniqueness, regularity, approximation and above all asymptotic behaviour of solutions are studied. Diverse applications to partial differential equations are given. The book contains an introduction to the Bochner integral and several appendices on background material. It is addressed to students and researchers interested in evolution equations, Laplace and Fourier transforms, and functional analysis. The authors have succeeded admirably in bringing together a wealth of recent material, much of which appears in book form for the first time. This authoritative work is likely to become a standard reference on both the Laplace transform and its applications to the abstract Cauchy problem. … The book is an excellent textbook as well. Proofs are always transparent and complete, and many topics that could have been considered as background material are covered as well. All this makes the text very accessible and self-contained. Applications to concrete differential operators are given throughout the text. Each chapter ends with historical and bibliographical comments. … In summary, this book will be of interest to a wide audience of (functional) analysts and it should have a place in every mathematics library. Warmly recommended! Jan van Neerven, Nieuw Archief voor Wiskunde, No. 3, 2003

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha