TEST - Catálogo BURRF
   

Generalized Bounds for Convex Multistage Stochastic Programs / by Daniel Kuhn ; edited by M. Beckmann, H. P. Künzi, G. Fandel, W. Trockel, A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten, U. Schittko.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Economics and Mathematical Systems ; 548Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xI, 190 páginas 21 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540269014
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • HD30.23
Recursos en línea:
Contenidos:
Basic Theory of Stochastic Optimization -- Convex Stochastic Programs -- Barycentric Approximation Scheme -- Extensions -- Applications in the Power Industry -- Conclusions.
Resumen: This book investigates convex multistage stochastic programs whose objective and constraint functions exhibit a generalized nonconvex dependence on the random parameters. Although the classical Jensen and Edmundson-Madansky type bounds or their extensions are generally not available for such problems, tight bounds can systematically be constructed under mild regularity conditions. A distinct primal-dual symmetry property is revealed when the proposed bounding method is applied to linear stochastic programs. Exemplary applications are studied to assess the performance of the theoretical concepts in situations of practical relevance. It is shown how market power, lognormal stochastic processes, and risk-aversion can be properly handled in a stochastic programming framework. Numerical experiments show that the relative gap between the bounds can typically be reduced to a few percent at reasonable problem dimensions.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Basic Theory of Stochastic Optimization -- Convex Stochastic Programs -- Barycentric Approximation Scheme -- Extensions -- Applications in the Power Industry -- Conclusions.

This book investigates convex multistage stochastic programs whose objective and constraint functions exhibit a generalized nonconvex dependence on the random parameters. Although the classical Jensen and Edmundson-Madansky type bounds or their extensions are generally not available for such problems, tight bounds can systematically be constructed under mild regularity conditions. A distinct primal-dual symmetry property is revealed when the proposed bounding method is applied to linear stochastic programs. Exemplary applications are studied to assess the performance of the theoretical concepts in situations of practical relevance. It is shown how market power, lognormal stochastic processes, and risk-aversion can be properly handled in a stochastic programming framework. Numerical experiments show that the relative gap between the bounds can typically be reduced to a few percent at reasonable problem dimensions.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha