TEST - Catálogo BURRF
   

Penalty, Shrinkage and Pretest Strategies : Variable Selection and Estimation / by S. Ejaz Ahmed.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in StatisticsEditor: Cham : Springer International Publishing : Imprint: Springer, 2014Descripción: Ix, 115 páginas 6 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319031491
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Preface -- Estimation Strategies -- Improved Estimation Strategies in Normal and Poisson Models -- Pooling Data: Making Sense or Folly -- Estimation Strategies in Multiple Regression Models -- Estimation Strategies in Partially Linear Models -- Estimation Strategies in Poisson Regression Models.
Resumen: The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.  Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the asymptotic properties of the non-penalty estimators and their asymptotic distributional efficiency comparisons.  Further, the risk properties of the non-penalty estimators and penalty estimators are explored through a Monte Carlo simulation study. Showcasing examples based on real datasets, the book will be useful for students and applied researchers in a host of applied fields. The book’s level of presentation and style make it accessible to a broad audience. It offers clear, succinct expositions of each estimation strategy.  More importantly, it clearly describes how to use each estimation strategy for the problem at hand.  The book is largely self-contained, as are the individual chapters, so that anyone interested in a particular topic or area of application may read only that specific chapter. The book is specially designed for graduate students who want to understand the foundations and concepts underlying penalty and non-penalty estimation and its applications. It is well-suited as a textbook for senior undergraduate and graduate courses surveying penalty and non-penalty estimation strategies, and can also be used as a reference book for a host of related subjects, including courses on meta-analysis. Professional statisticians will find this book to be a valuable reference work, since nearly all chapters are self-contained.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Estimation Strategies -- Improved Estimation Strategies in Normal and Poisson Models -- Pooling Data: Making Sense or Folly -- Estimation Strategies in Multiple Regression Models -- Estimation Strategies in Partially Linear Models -- Estimation Strategies in Poisson Regression Models.

The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.  Specifically, it considers the full model, submodel, penalty, pretest and shrinkage estimation techniques for three regression models before presenting the asymptotic properties of the non-penalty estimators and their asymptotic distributional efficiency comparisons.  Further, the risk properties of the non-penalty estimators and penalty estimators are explored through a Monte Carlo simulation study. Showcasing examples based on real datasets, the book will be useful for students and applied researchers in a host of applied fields. The book’s level of presentation and style make it accessible to a broad audience. It offers clear, succinct expositions of each estimation strategy.  More importantly, it clearly describes how to use each estimation strategy for the problem at hand.  The book is largely self-contained, as are the individual chapters, so that anyone interested in a particular topic or area of application may read only that specific chapter. The book is specially designed for graduate students who want to understand the foundations and concepts underlying penalty and non-penalty estimation and its applications. It is well-suited as a textbook for senior undergraduate and graduate courses surveying penalty and non-penalty estimation strategies, and can also be used as a reference book for a host of related subjects, including courses on meta-analysis. Professional statisticians will find this book to be a valuable reference work, since nearly all chapters are self-contained.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha