TEST - Catálogo BURRF
   

Geometry of Müntz Spaces and Related Questions / by Vladimir Gurariy, Wolfgang Lusky.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 1870Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: xiii, 176 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540315469
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA319-329.9
Recursos en línea:
Contenidos:
Preface -- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces -- Sequences in Normed Spaces -- Isomorphism, Isometries and Embeddings -- Spaces of Universal Disposition -- Bounded Approximation Properties -- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem -- Classification and Elementary Properties of Müntz Sequences -- More on the Geometry of Müntz Sequences and Müntz Polynomials -- Operators of Finite Rank and Bases in Müntz Spaces -- Projection Types and the Isomorphism Problem for Müntz Spaces -- The Classes [M], A, P, and Pe -- Finite Dimensional Müntz Limiting Spaces in C -- References -- Index.
Resumen: Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Preface -- Part I Subspaces and Sequences in Banach Spaces: Disposition of Subspaces -- Sequences in Normed Spaces -- Isomorphism, Isometries and Embeddings -- Spaces of Universal Disposition -- Bounded Approximation Properties -- Part II On the Geometry of Müntz Sequences: Coefficient Estimates and the Müntz Theorem -- Classification and Elementary Properties of Müntz Sequences -- More on the Geometry of Müntz Sequences and Müntz Polynomials -- Operators of Finite Rank and Bases in Müntz Spaces -- Projection Types and the Isomorphism Problem for Müntz Spaces -- The Classes [M], A, P, and Pe -- Finite Dimensional Müntz Limiting Spaces in C -- References -- Index.

Starting point and motivation for this volume is the classical Muentz theorem which states that the space of all polynomials on the unit interval, whose exponents have too many gaps, is no longer dense in the space of all continuous functions. The resulting spaces of Muentz polynomials are largely unexplored as far as the Banach space geometry is concerned and deserve the attention that the authors arouse. They present the known theorems and prove new results concerning, for example, the isomorphic and isometric classification and the existence of bases in these spaces. Moreover they state many open problems. Although the viewpoint is that of the geometry of Banach spaces they only assume that the reader is familiar with basic functional analysis. In the first part of the book the Banach spaces notions are systematically introduced and are later on applied for Muentz spaces. They include the opening and inclination of subspaces, bases and bounded approximation properties and versions of universality.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha