TEST - Catálogo BURRF
   

Quantum Transport : Modelling, Analysis and Asymptotics — Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy September 11–16, 2006 / by Grégoire Allaire, Anton Arnold, Pierre Degond, Thomas Yizhao Hou ; edited by Naoufel Ben Abdallah, Giovanni Frosali.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 1946Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Descripción: recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783540795742
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA370-380
Recursos en línea:
Contenidos:
Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation -- Mathematical Properties of Quantum Evolution Equations -- Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle -- Multiscale Computations for Flow and Transport in Heterogeneous Media.
Resumen: The CIME Summer School held in Cetraro, Italy, in 2006 addressed researchers interested in the mathematical study of quantum transport models. In this volume, a result of the above mentioned Summer School, four leading specialists present different aspects of quantum transport modelling. Allaire introduces the periodic homogenization theory, with a particular emphasis on applications to the Schrödinger equation. Arnold focuses on several quantum evolution equations that are used for quantum semiconductor device simulations. Degond presents quantum hydrodynamic and diffusion models starting from the entropy minimization principle. Hou provides the state-of-the-art survey of the multiscale analysis, modelling and simulation of transport phenomena. The volume contains accurate expositions of the main aspects of quantum transport modelling and provides an excellent basis for researchers in this field.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation -- Mathematical Properties of Quantum Evolution Equations -- Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle -- Multiscale Computations for Flow and Transport in Heterogeneous Media.

The CIME Summer School held in Cetraro, Italy, in 2006 addressed researchers interested in the mathematical study of quantum transport models. In this volume, a result of the above mentioned Summer School, four leading specialists present different aspects of quantum transport modelling. Allaire introduces the periodic homogenization theory, with a particular emphasis on applications to the Schrödinger equation. Arnold focuses on several quantum evolution equations that are used for quantum semiconductor device simulations. Degond presents quantum hydrodynamic and diffusion models starting from the entropy minimization principle. Hou provides the state-of-the-art survey of the multiscale analysis, modelling and simulation of transport phenomena. The volume contains accurate expositions of the main aspects of quantum transport modelling and provides an excellent basis for researchers in this field.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha