TEST - Catálogo BURRF
   

Statistical Pronunciation Modeling for Non-Native Speech Processing / by Rainer E. Gruhn, Wolfgang Minker, Satoshi Nakamura.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Signals and Communication TechnologyEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: x, 114 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642195860
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • TK5102.9
Recursos en línea:
Contenidos:
Introduction -- Automatic Speech Recognition -- Properties of Non-native Speech -- Pronunciation Variation Modeling in the Literature -- Non-native Speech Database -- Handling Non-native Speech -- Pronunciation HMMs.
Resumen: In this work, the authors present a fully statistical approach to model non--native speakers' pronunciation. Second-language speakers pronounce words in multiple different ways compared to the native speakers. Those deviations, may it be phoneme substitutions, deletions or insertions, can be modelled automatically with the new method presented here. The methods is based on a discrete hidden Markov model as a word pronunciation model, initialized on a standard pronunciation dictionary. The implementation and functionality of the methodology has been proven and verified with a test set of non-native English in the regarding accent. The book is written for researchers with a professional interest in phonetics and automatic speech and speaker recognition.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Automatic Speech Recognition -- Properties of Non-native Speech -- Pronunciation Variation Modeling in the Literature -- Non-native Speech Database -- Handling Non-native Speech -- Pronunciation HMMs.

In this work, the authors present a fully statistical approach to model non--native speakers' pronunciation. Second-language speakers pronounce words in multiple different ways compared to the native speakers. Those deviations, may it be phoneme substitutions, deletions or insertions, can be modelled automatically with the new method presented here. The methods is based on a discrete hidden Markov model as a word pronunciation model, initialized on a standard pronunciation dictionary. The implementation and functionality of the methodology has been proven and verified with a test set of non-native English in the regarding accent. The book is written for researchers with a professional interest in phonetics and automatic speech and speaker recognition.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha