TEST - Catálogo BURRF
   

Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R : Order-Restricted Analysis of Microarray Data / edited by Dan Lin, Ziv Shkedy, Daniel Yekutieli, Dhammika Amaratunga, Luc Bijnens.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Use R!Editor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012Descripción: xv, 282 páginas 96 ilustraciones, 4 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642240072
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
Introduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.
Resumen: This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Introduction -- Part I: Dose-response Modeling: An Introduction -- Estimation Under Order Restrictions -- The Likelihood Ratio Test -- Part II: Dose-response Microarray Experiments -- Functional Genomic Dose-response Experiments -- Adjustment for Multiplicity -- Test for Trend -- Order Restricted Bisclusters -- Classification of Trends in Dose-response Microarray Experiments Using Information Theory Selection Methods -- Multiple Contrast Test -- Confidence Intervals for the Selected Parameters -- Case Study Using GUI in R: Gene Expression Analysis After Acute Treatment With Antipsychotics.

This book focuses on the analysis of dose-response microarray data in pharmaceutical setting, the goal being to cover this important topic for early drug development and to provide user-friendly R packages that can be used to analyze dose-response microarray data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students. Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as the likelihood ratio test and non-linear parametric models, which are used in the second part of the book.  Part II is the core of the book. Methodological topics discussed include: ·         Multiplicity adjustment ·         Test statistics and testing procedures for the analysis of dose-response microarray data ·         Resampling-based inference and use of the SAM method at the presence of small-variance genes in the data ·         Identification and classification of dose-response curve shapes ·         Clustering of order restricted (but not necessarily monotone) dose-response profiles ·         Hierarchical Bayesian models and non-linear models for dose-response microarray data ·         Multiple contrast tests All methodological issues in the book are illustrated using four “real-world” examples of dose-response microarray datasets from early drug development experiments.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha