TEST - Catálogo BURRF
   

From Objects to Diagrams for Ranges of Functors / by Pierre Gillibert, Friedrich Wehrung.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 2029Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: CLviii, 10 páginas 19 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642217746
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA150-272
Recursos en línea:
Contenidos:
1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
Resumen: This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.

This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha