TEST - Catálogo BURRF
   

Formulas Useful for Linear Regression Analysis and Related Matrix Theory : It's Only Formulas But We Like Them / by Puntanen Simo, Styan George P. H., Isotalo Jarkko.

Por: Colaborador(es): Tipo de material: TextoTextoSeries SpringerBriefs in StatisticsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: xii, 125 páginas 3 ilustraciones, 2 ilustraciones en color. recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783642329319
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA276-280
Recursos en línea:
Contenidos:
The Model Matrix -- Fitted Values and Residuals -- Regression Coefficients -- Alternative Estimators -- Decompositions of Sums of Squares -- Partial Correlations -- Distributions -- Testing Hypotheses -- Diagnostics -- BLUE: Some Helpful Identities -- Estimability -- Best Linear Unbiased Estimator -- The Watson Efficiency -- Linear Sufficiency and Admissibility -- Best Linear Unbiased Predictor -- Mixed Model -- Multivariate Linear Model -- Inverse of a Partitioned Matrix -- Generalized Inverses -- Projectors -- Eigenvalues -- Discriminant Analysis -- Factor Analysis -- Canonical Correlations -- Matrix Decompositions -- Principal Component Analysis -- Löwner Ordering -- Rank Rules -- Inequalities -- Kronecker Product -- Matrix Derivatives.
Resumen: This is an unusual book because it contains a great deal of formulas. Hence it is a blend of monograph, textbook, and handbook. It is intended for students and researchers who need quick access to useful formulas appearing in the linear regression model and related matrix theory. This is not a regular textbook - this is supporting material for courses given in linear statistical models. Such courses are extremely common at universities with quantitative statistical analysis programs.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

The Model Matrix -- Fitted Values and Residuals -- Regression Coefficients -- Alternative Estimators -- Decompositions of Sums of Squares -- Partial Correlations -- Distributions -- Testing Hypotheses -- Diagnostics -- BLUE: Some Helpful Identities -- Estimability -- Best Linear Unbiased Estimator -- The Watson Efficiency -- Linear Sufficiency and Admissibility -- Best Linear Unbiased Predictor -- Mixed Model -- Multivariate Linear Model -- Inverse of a Partitioned Matrix -- Generalized Inverses -- Projectors -- Eigenvalues -- Discriminant Analysis -- Factor Analysis -- Canonical Correlations -- Matrix Decompositions -- Principal Component Analysis -- Löwner Ordering -- Rank Rules -- Inequalities -- Kronecker Product -- Matrix Derivatives.

This is an unusual book because it contains a great deal of formulas. Hence it is a blend of monograph, textbook, and handbook. It is intended for students and researchers who need quick access to useful formulas appearing in the linear regression model and related matrix theory. This is not a regular textbook - this is supporting material for courses given in linear statistical models. Such courses are extremely common at universities with quantitative statistical analysis programs.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha