TEST - Catálogo BURRF
   

A Probabilistic Framework for Point-Based Shape Modeling in Medical Image Analysis / by Heike Hufnagel.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Wiesbaden : Vieweg+Teubner Verlag, 2011Descripción: xxiii, 147 páginas 53 ilustraciones recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783834886002
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • R856-857
Recursos en línea: Resumen: In medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems. Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method. The dissertation has received the Fokusfinder award 2011 by the Innovationsstiftung Schleswig-Holstein (ISH), the Basler AG and Philips Medical Systems.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

In medical image analysis, major areas such as radiotherapy, surgery planning, and quantitative diagnostics benefit from shape modeling to facilitate solutions to analysis, segmentation and reconstruction problems. Heike Hufnagel proposes a mathematically sound statistical shape model using correspondence probabilities instead of 1-to-1 correspondences. The explicit probabilistic model is employed as shape prior in an implicit level set segmentation. Due to the particular attributes of the new model, the challenging integration of explicit and implicit representations can be done in an elegant mathematical formulation, thus combining the advantages of both explicit model and implicit segmentation. Evaluations are performed to depict the characteristics and strengths of the new model and segmentation method. The dissertation has received the Fokusfinder award 2011 by the Innovationsstiftung Schleswig-Holstein (ISH), the Basler AG and Philips Medical Systems.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha