TEST - Catálogo BURRF
   

Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear / by Timm Krüger.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Wiesbaden : Vieweg+Teubner Verlag : Imprint: Vieweg+Teubner Verlag, 2012Descripción: xiii, 163 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783834823762
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QC1-75
Recursos en línea:
Contenidos:
Complex fluids and their rheology -- Physics of red blood cells and hemorheology -- Numerical model for simulations of red blood cell suspensions -- Physical considerations and ingredients for the numerical model -- Fluid solver: the lattice Boltzmann method -- Fluid-structure interaction: the immersed boundary method -- Membrane model and energetics -- Stress evaluation in combined immersed boundary lattice Boltzmann simulations -- Rheology and microscopic behavior of red blood cell suspensions.
Resumen: The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

Complex fluids and their rheology -- Physics of red blood cells and hemorheology -- Numerical model for simulations of red blood cell suspensions -- Physical considerations and ingredients for the numerical model -- Fluid solver: the lattice Boltzmann method -- Fluid-structure interaction: the immersed boundary method -- Membrane model and energetics -- Stress evaluation in combined immersed boundary lattice Boltzmann simulations -- Rheology and microscopic behavior of red blood cell suspensions.

The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha