TEST - Catálogo BURRF
   

Topological and Bivariant K-Theory / by Joachim Cuntz, Ralf Meyer, Jonathan M. Rosenberg.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Oberwolfach Seminars ; 36Editor: Basel : Birkhäuser Basel, 2007Descripción: xI, 262 páginas recurso en líneaTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783764383992
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • QA612.33
Recursos en línea:
Contenidos:
The elementary algebra of K-theory -- Functional calculus and topological K-theory -- Homotopy invariance of stabilised algebraic K-theory -- Bott periodicity -- The K-theory of crossed products -- Towards bivariant K-theory: how to classify extensions -- Bivariant K-theory for bornological algebras -- A survey of bivariant K-theories -- Algebras of continuous trace, twisted K-theory -- Crossed products by ? and Connes’ Thom Isomorphism -- Applications to physics -- Some connections with index theory -- Localisation of triangulated categories.
Resumen: Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

The elementary algebra of K-theory -- Functional calculus and topological K-theory -- Homotopy invariance of stabilised algebraic K-theory -- Bott periodicity -- The K-theory of crossed products -- Towards bivariant K-theory: how to classify extensions -- Bivariant K-theory for bornological algebras -- A survey of bivariant K-theories -- Algebras of continuous trace, twisted K-theory -- Crossed products by ? and Connes’ Thom Isomorphism -- Applications to physics -- Some connections with index theory -- Localisation of triangulated categories.

Topological K-theory is one of the most important invariants for noncommutative algebras equipped with a suitable topology or bornology. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. We describe a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, we discuss other approaches to bivariant K-theories for operator algebras. As applications, we study K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha