TEST - Catálogo BURRF
   

Uncertainty in biology : a computational modeling approach / edited by Liesbet Geris, David Gomez-Cabrero.

Colaborador(es): Tipo de material: TextoTextoSeries Studies in Mechanobiology, Tissue Engineering and Biomaterials ; 17Editor: Cham : Springer International Publishing : Springer, 2016Edición: 1st ed. 2016Descripción: ix, 478 páginas : 142 ilustraciones, 45 ilustraciones en colorTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de portador:
  • recurso en línea
ISBN:
  • 9783319212968
Formatos físicos adicionales: Edición impresa:: Sin títuloClasificación LoC:
  • R856-857
Recursos en línea:
Contenidos:
An Introduction to Uncertainty in the Development of Computational Models of Biological Processes -- Reverse Engineering under Uncertainty -- Probabilistic Computational Causal Discovery for Systems Biology -- Macroscopic Simulation of Individual-Based Stochastic Models for Biological Processes -- The Experimental Side of Parameter Estimation -- Statistical Data Analysis and Modeling -- Optimization in Biology: Parameter Estimation and the Associated Optimization Problem -- Interval Methods -- Model Extension and Model Selection -- Bayesian Model Selection Methods and their Application to Biological ODE Systems -- Sloppiness and the Geometry of Parameter Space -- Modeling and Model Simplification to Facilitate Biological Insights and Predictions -- Sensitivity Analysis by Design of Experiments -- Waves in Spatially-Disordered Neural Fields: a Case Study in Uncertainty Quantification -- X In-silico Models of Trabecular Bone: a Sensitivity Analysis Perspective -- Neuroswarm: a Methodology to Explore the Constraints that Function Imposes on Simulation Parameters in Large-Scale Networks of Biological Neurons -- Prediction Uncertainty Estimation Despite Unidentifiability: an Overview of Recent Developments -- Computational Modeling Under Uncertainty: Challenges and Opportunities.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Springer eBooks

An Introduction to Uncertainty in the Development of Computational Models of Biological Processes -- Reverse Engineering under Uncertainty -- Probabilistic Computational Causal Discovery for Systems Biology -- Macroscopic Simulation of Individual-Based Stochastic Models for Biological Processes -- The Experimental Side of Parameter Estimation -- Statistical Data Analysis and Modeling -- Optimization in Biology: Parameter Estimation and the Associated Optimization Problem -- Interval Methods -- Model Extension and Model Selection -- Bayesian Model Selection Methods and their Application to Biological ODE Systems -- Sloppiness and the Geometry of Parameter Space -- Modeling and Model Simplification to Facilitate Biological Insights and Predictions -- Sensitivity Analysis by Design of Experiments -- Waves in Spatially-Disordered Neural Fields: a Case Study in Uncertainty Quantification -- X In-silico Models of Trabecular Bone: a Sensitivity Analysis Perspective -- Neuroswarm: a Methodology to Explore the Constraints that Function Imposes on Simulation Parameters in Large-Scale Networks of Biological Neurons -- Prediction Uncertainty Estimation Despite Unidentifiability: an Overview of Recent Developments -- Computational Modeling Under Uncertainty: Challenges and Opportunities.

Para consulta fuera de la UANL se requiere clave de acceso remoto.

Universidad Autónoma de Nuevo León
Secretaría de Extensión y Cultura - Dirección de Bibliotecas @
Soportado en Koha