000 03554nam a22003735i 4500
001 277328
003 MX-SnUAN
005 20160429153815.0
007 cr nn 008mamaa
008 150903s2010 xxu| o |||| 0|eng d
020 _a9780387096391
_9978-0-387-09639-1
024 7 _a10.1007/9780387096391
_2doi
035 _avtls000329713
039 9 _a201509030451
_bVLOAD
_c201404121652
_dVLOAD
_c201404091429
_dVLOAD
_c201401311316
_dstaff
_y201401291438
_zstaff
_wmsplit0.mrc
_x136
050 4 _aQA71-90
100 1 _aRosenberg, Arnold L.
_eautor
_9300001
245 1 4 _aThe Pillars of Computation Theory :
_bState, Encoding, Nondeterminism /
_cby Arnold L. Rosenberg.
250 _aFirst.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _aXVIII, 326páginas, 49 illus.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aPROLEGOMENA -- Mathematical Preliminaries -- STATE -- Online Automata: Exemplars of “State” -- Finite Automata and Regular Languages -- Applications of the Myhill–Nerode Theorem -- Enrichment Topics -- ENCODING -- Countability and Uncountability: The Precursors of “Encoding” -- Enrichment Topic: “Efficient” Pairing Functions, with Applications -- Computability Theory -- NONDETERMINISM -- Nondeterministic Online Automata -- Nondeterministic FAs -- Nondeterminism in Computability Theory -- Complexity Theory.
520 _aComputation theory is a discipline that strives to use mathematical tools and concepts in order to expose the nature of the activity that we call “computation” and to explain a broad range of observed computational phenomena. Why is it harder to perform some computations than others? Are the differences in difficulty that we observe inherent, or are they artifacts of the way we try to perform the computations? Even more basically: how does one reason about such questions? This book strives to endow upper-level undergraduate students and lower-level graduate students with the conceptual and manipulative tools necessary to make Computation theory part of their professional lives. The author tries to achieve this goal via three stratagems that set this book apart from most other texts on the subject. (1) The author develops the necessary mathematical concepts and tools from their simplest instances, so that the student has the opportunity to gain operational control over the necessary mathematics. (2) He organizes the development of the theory around the three “pillars” that give the book its name, so that the student sees computational topics that have the same intellectual origins developed in physical proximity to one another. (3) He strives to illustrate the “big ideas” that computation theory is built upon with applications of these ideas within “practical” domains that the students have seen elsewhere in their courses, in mathematics, in computer science, and in computer engineering.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387096384
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-09639-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c277328
_d277328