000 | 03020nam a22003975i 4500 | ||
---|---|---|---|
001 | 277469 | ||
003 | MX-SnUAN | ||
005 | 20160429153820.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387294896 _99780387294896 |
||
024 | 7 |
_a10.1007/9780387294896 _2doi |
|
035 | _avtls000330755 | ||
039 | 9 |
_a201509030429 _bVLOAD _c201404121720 _dVLOAD _c201404091458 _dVLOAD _c201401311350 _dstaff _y201401301153 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA76.9.D343 | |
100 | 1 |
_aVaidya, Jaideep. _eautor _9300271 |
|
245 | 1 | 0 |
_aPrivacy Preserving Data Mining / _cby Jaideep Vaidya, Yu Michael Zhu, Christopher W. Clifton. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_ax, 121 páginas, 20 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Information Security, _x1568-2633 ; _v19 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPrivacy and Data Mining -- What is Privacy? -- Solution Approaches / Problems -- Predictive Modeling for Classification -- Predictive Modeling for Regression -- Finding Patterns and Rules (Association Rules) -- Descriptive Modeling (Clustering, Outlier Detection) -- Future Research - Problems remaining. | |
520 | _aData mining has emerged as a significant technology for gaining knowledge from vast quantities of data. However, concerns are growing that use of this technology can violate individual privacy. These concerns have led to a backlash against the technology, for example, a "Data-Mining Moratorium Act" introduced in the U.S. Senate that would have banned all data-mining programs (including research and development) by the U.S. Department of Defense. Privacy Preserving Data Mining provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. This book demonstrates how these approaches can achieve data mining, while operating within legal and commercial restrictions that forbid release of data. Furthermore, this research crystallizes much of the underlying foundation, and inspires further research in the area. Privacy Preserving Data Mining is designed for a professional audience composed of practitioners and researchers in industry. This volume is also suitable for graduate-level students in computer science. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZhu, Yu Michael. _eautor _9300272 |
|
700 | 1 |
_aClifton, Christopher W. _eautor _9300273 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387258867 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-29489-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c277469 _d277469 |