000 03020nam a22003975i 4500
001 277469
003 MX-SnUAN
005 20160429153820.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387294896
_99780387294896
024 7 _a10.1007/9780387294896
_2doi
035 _avtls000330755
039 9 _a201509030429
_bVLOAD
_c201404121720
_dVLOAD
_c201404091458
_dVLOAD
_c201401311350
_dstaff
_y201401301153
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.D343
100 1 _aVaidya, Jaideep.
_eautor
_9300271
245 1 0 _aPrivacy Preserving Data Mining /
_cby Jaideep Vaidya, Yu Michael Zhu, Christopher W. Clifton.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _ax, 121 páginas, 20 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Information Security,
_x1568-2633 ;
_v19
500 _aSpringer eBooks
505 0 _aPrivacy and Data Mining -- What is Privacy? -- Solution Approaches / Problems -- Predictive Modeling for Classification -- Predictive Modeling for Regression -- Finding Patterns and Rules (Association Rules) -- Descriptive Modeling (Clustering, Outlier Detection) -- Future Research - Problems remaining.
520 _aData mining has emerged as a significant technology for gaining knowledge from vast quantities of data. However, concerns are growing that use of this technology can violate individual privacy. These concerns have led to a backlash against the technology, for example, a "Data-Mining Moratorium Act" introduced in the U.S. Senate that would have banned all data-mining programs (including research and development) by the U.S. Department of Defense. Privacy Preserving Data Mining provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. This book demonstrates how these approaches can achieve data mining, while operating within legal and commercial restrictions that forbid release of data. Furthermore, this research crystallizes much of the underlying foundation, and inspires further research in the area. Privacy Preserving Data Mining is designed for a professional audience composed of practitioners and researchers in industry. This volume is also suitable for graduate-level students in computer science.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZhu, Yu Michael.
_eautor
_9300272
700 1 _aClifton, Christopher W.
_eautor
_9300273
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387258867
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-29489-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c277469
_d277469